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This thesis addresses the problem of extending influence diagram theory such that
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decision processes can be effectively modeled within this graphical modeling language.

<
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Specifically, the extension allows value function separability and the principle of

optimality to be captured in an influence diagram and then used in analysis. To '.‘-‘.‘i

A

accomplish this, the concept of a subvalue node has been developed. The set of value
preserving operations on influence diagrams have been expanded to include operations

- that exploit the presence of these nodes. Also an algorithm has been developed to solve
influence diagrams with subvalue nodes.

This work is important from two perspectives. From the decision analysis
perspective, it allows a full and simple exploitation of all separability in the value
function of a decision problem. Importantly, this means that algorithms can be
designed to solve influence diagrams that automatically recognize the opportunity for
applying the principle of optimality. From the decision processes perspective,
influence diagrams with subvalue nodes allow efficient formulation and solution of

nonstandard decision processes. Also it allows the conditional independence among

the variables in the problem to be exploited. This significantly reduces the data storage
requirements and computational complexity of solving the problem. Finally, the
influence diagram with subvalue nodes enhances understanding of many of the critical
characteristics of various decision processesRIt is concluded that the concept of a

subvalue node is both consistent with previous influence diagram theory and expands

the application potential of that theory to include a rather large and important class of

-

decision problems, namely decision processes.
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ABBREVIATIONS AND SYMBOLS

set of all chance nodes in an influence diagram

conditional (or direct) predecessors of chance node x in an influence
diagram

if X is a set of nodes, then C(X) is the set of nodes that directly precede a
node in X but are not themselves in X

set of all decision nodes in an influence diagram

expectation with respect to x conditioned on C(x), the conditional
predecessors of x

set of all deterministic nodes in an influence diagram
set of informational (or direct) predecessors of decision node d

maximization with respect to d conditioned on I(d), the informational
predecessors of d

Cartesian product of the sets of alternatives for each decision node in D
Cartesian product of the sets of outcomes for each chance node in X
probability distribution for chance node x

set of direct successors of node x
set of all subvalue nodes in an influence diagram including the value node

weak predecessors of node x (includes x, its conditional predecessors and
its indirect predecessors)

. T B T S T P L I
A A e e Sl et S A A A AT s lataiata e atatalatalatatat




A atetal A0 Nt LG L LESel AR b tol taltflnd S IRl £ 1 I Al 2 ek Alr S A gk o & Aeg SRR S pid ohh ek pan e Llir ogn- S AR

Chapter 1

Introduction

Decision analysis has established itself in the last twenty years as a theory and
methodology for applying quantitative analysis to important decision problems in an
uncertain, complex and dynamic world. Decision analysis has been applied to a broad
spectrum of decision problems from strategic planning in business to social policy
decisions. Some specific examples include the decision to seed hurricanes, selection of
mission configuration on the space project Voyager Mars, analysis of a synthetic fuels
commercialization program and the forecasting of exploratory research and
development success.

Decision analysis emerged in the early 1960's from a combination of decision
theory and systems analysis. It has several important defining characteristics.

Quantitative models are developed to represent decision problems and full use is made

of computers to analyze these models. Subjective probabilities and probability theory
are used to represent and analyze uncertainty. A single measure is used to assign
vilues to outcomes of interest, both monetary and nonmonetary. The risk and time

preference of the decision maker are explicitly and quantitatively encoded into the
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decision model. Sensitivity analysis and value of information calculations are used to e
systematically reduce or expand the decision model to a size commensurate with the ,_:
importance of the problem. t"‘*

Within decision analysis a modeling language known as influence diagrams has \‘
evolved. Influence diagrams have been used for several years as a tool for formulation __m_:
of decision analysis problems in both the academic environment and professional F"_
practice. Recently, the development of computer tools have made it feasible to not only :
formulate but also to analyze decision models as influence diagrams. Two major _'“_\
reliability problems and several medical decision analysis problems have been F:-u
successfully analyzed within the influence diagram framework.

This introductory chapter begins with a brief introduction to influence diagrams.
Influence diagrams are then used to introduce decision processes. The goal of this

research and a summary of results are then presented. Finally, related research is

_ discussed.

1.1 INFLUENCE DIAGRAMS

Definition D
Influence diagrams are a modeling language. Probabilistic inference and decision A

analysis models can be easily represented as influence diagrams. Influence diagrams

are hierarchical, containing a top level graph with data as the second level. They are

mathematically precise. Each object in an influence diagram maps to an object in the
probability calculus. Each transformation of an influence diagram maps to an operation
in the probability calculus. Because they are mathematically precise, influence

diagrams can be used to both formulate and analyze a decision problem.

e A Wt e e e e N e .'.'.‘.l-.'.' RTINS "’.’ .:. et e T et et . ".«..-‘..s-‘ ."_." Wt e
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Influence diagrams can be formally defined using the terminology of graph theory.
An influence diagram is a directed graph with no cycles. There are four different kinds
of nodes: decision nodes represent decision variables, chance nodes represent random
variables, deterministic nodes represent deterministic functions and value nodes
represent the maximum expected value of the problem.

Arcs into decision nodes represent information known to the decision maker at the
time the decision must be made. Arcs into chance nodes represent probabilistic
dependence of the successor upon its predecessors. Importantly, the absence of an arc
between two chance nodes indicates that the corresponding two variables are
conditionally independent. The absence of an arc from a decision node to a chance
node indicates that the corresponding random variable is conditionally independent of
the corresponding decision variable. The influence diagram as a whole represents a
specific expansion of the joint probability distribution of the random variables in the

problem. Fig. 1.1 contains a summary of these definitions.

O : random variable : decision variable

@ : deterministic variable : value function
—PO : probabilistic dependence

: information available

Figure 1.1. Influence diagram definitions.
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The set of all nodes in an influence diagram are designated by N. The set of all
chance nodes is designated by C, the set of all decision nodes by D and the set of all
deterministic nodes by F. The set containing the value node is designated by V. For
decision node d, I(d) designates the information available to the decision maker when
decision d must be made, that is I(d) is the set of all direct predecessors of d. We call
these the informational predecessors of d. For chance, deterministic or value
node x, C(x) designates the set of variables that condition x which are all of the direct
predecessors of x. We call these the conditional predecessors of x. Similarly, if
X is a set of nodes, we use C(X) to denote the set of nodes which are direct
predecessors of some node in X but are not themselves in X. W(y) is used to represent
the weak predecessors of y, that is the set of nodes that includes y, the predecessors
of y and all other nodes in the diagram that have a directed path to y. Finally, we use
S(y) to designate the direct successors of y. In these cases, y is any element of N.

Now let there be a directed path from some chance or decision node y to a

deterministic node r, such that each node on that path is a deterministic node. Let f; be
the deterministic function associated with r. Then f} is a composite function to which y
is an argument; that is, f; is a function of y. We call y a functional predecessor of

r. For example, if we have f; = f;(s) and s = s(w,z), then f; could be written as a

function of w and z. Variables s, w and z are all functional predecessors of r.

In this thesis it is important to designate the set of chance and decision nodes that
are functional predecessors of a specified subvalue node r. Since there are no
deterministic nodes in the influence diagrams considered in this thesis, this set contains
those chance and decision nodes which directly precede an element of all subvalue node
predecessors (direct and indirect) of r. From the above we see that this set is C(r) (r

and all its subvalue node predecessors).
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With each chance node x is associated a subframe of data containing the outcome

space of x, £y, the probability distribution of x, 1y, and the predecessors of x, C(x).

With each decision node d is a data subframe containing the alternatives of the
associated decision variable, 24, and the predecessors of d, 1(d).

An example of an influence diagram is shown in Fig. 1.2. Only the subframe for
node x of the underlying data frame is shown. This graph can be interpreted as
follows. The variables x and z are independent giveny. Also, the variables z, x and r
are conditionally independent of d. The only decision variable is d. The decision
maker will know the outcome of random variable y before decision d must be made but
will not know the outcome of x and z. The value function of the decision problem, V,

is a function of d, r, y and z. Because

V=V, r(x), y, z) = f(d,x.y,z)

x is a functional predecessor of V. Note that the probability distribution of x is stored

in an array.
(x (kind chance)
(preds y)
y X (outcomes ab ¢)
(probs array#580118A2)
T~ (succs 1))
d
Z QO
\

Figure 1.2. A simple influence diagram with data subframe for one node.
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The decisions in an influence diagram are totally ordered. Also, one of the basic
assumptions in decision theory is that when making decision d, a decision maker
knows the chosen alternative for all previous decisions and all information known at the
time of previous decisions. This "no forgetting" implies that every decision node d
should have as predecessors all previous decisions plus all direct predecessors of all
previous decisions. Since this would clutter up the influence diagram, all of these arcs
are not shown. Only those arcs into d that represent information not previously known
for any decision and those arcs necessary to establish a total ordering of the decisions
are contained explicitly in the diagram. The others, called implicit arcs, are not
contained explicitly in the diagram, but must be considered when analyzing the
influence diagram.

If a node in an influence diagram has no successors, then no matter what value it
assumes no other node in the diagram is effected. Such nodes are called barren and
can be deleted from the diagram.

Now, each influence diagram represents a specific expansion of the joint
probability distribution of the random variables in the diagram. Also each influence
diagram with a value node may be solved for a maximum expected value and an optimal
policy. A reduction of the influence diagram may now be defined. Analysis of the
influence diagram utilizes a set of these reductions (or value preserving

transformations).

Definition. An operation that transforms influence diagram A to influence diagram B
is a reduction (or value preserving) if B has a joint probability distribution

consistent with A and if the optimal policy and expected value implied by B is the
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same as that implied by A. .
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Fig. 1.3 provides a summary of the primitive influence diagram reductions and the
conditions necessary for each. It does not include the new reductions to be developed

in this thesis.

(a) Application of Bayes rule (reversal of the x to y arc). Condition: no
alternate path from x to y.

) Summation of x out of the x,y joint distribution (removal of x into y by
summation). Condition: y is the only successor of x.

(c) Expectation of V with respect to x (removal of x into V by expectation).
Condition: V is the only successor of x.
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(d) Maximization of V with respect to d (removal of d into V by maximization).

Condition: V is the only successor of d and C(V)\d is contained in I(d).

Figure 1.3. The primitive influence diagram reductions.

Influence diagrams as defined in this section have proven to be an effective tool for
representing and analyzing probabilistic inference and decision analysis models. The

advantages of influence diagrams are discussed next.

Advantages

The problem of this thesis has been motivated by the effectiveness of influence
diagrams as a modeling language for static decision analysis problems. This
effectiveness has many different aspects. One of the most important of these is that
influence diagrams both capture the structural and qualitative aspects of the decision
problem as well as serve as the framework for efficient quantitative analysis of the
problem. There is no need to translate the model from a framework that is effective for
modeling and formulation to one that is effective for analysis. Influence diagrams are
effective for both.

This dual role of influence diagrams also allows partially solving an influence
diagram resulting in a simplified but meaningful intermediate model that is itself a valid
influence diagram. The intermediate model consists of a subset of the original variables
in the problem. perhaps those considered most critical by the decision maker. These

intermediate models, among other advantages, support efficient sensitivity analysis.
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modeling and analysis process. For example, the influence diagram explicitly
represents the timing of information availability. This forces the modeler to consider in

a precise way what information becomes available and when it becomes available. This

Y g

reduces the chance of modeling errors related to information timing.
Influence diagrams grew out of attempts to effectively represent decision models in

a form suitable for automatic computation. This goal has been achieved and two other

advantages of influence diagrams for automatic computation have come to light. First,
-. influence diagrams allow efficient representation and exploitation of the conditional
independence in a decision problem. For example, consider a decision problem
represented as a symmetric tree, that is a decision tree in which every trajectory contains
all variables in the model and every combination of outcomes corresponds to a
trajectory. Such a symmetric tree can be solved more efficiently as an influence

diagram. Also, influence diagrams serve as an effective basis for the development of

> algorithms that produce the optimal solution strategy for computer solution of decision
:::‘ problems. These algorithms depend heavily on graph theory, exploiting the fact that
X the influence diagram is a graphical representation of the decision problem.
o Finally, but importantly, influence diagrams have proven to be an effective tool for S
not only communicating decision models among decision analysts and decision makers,
% but also for communication between the analyst and the computer.

The advantages discussed above come from a combination of the following

ingredients:

a) The dominant object represented by the influence diagram is the mathematically
defined dependency and information structure of the problem.
b) This structure is at the same time, the most important information about the

problem for purposes of analysis and a natural and intuitive representation of
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the structural aspects of the problem which the decision maker finds most
. important.
c¢) This structure is captured in the influence diagram as a graph. Thus, graph

theory techniques can be used in analysis of the decision model. Also,

graphical representations are natural and intuitive for the decision maker.

d) The influence diagram is a two level hierarchy. This hierarchy allows the
effective consideration of the critical structural aspects of the model in the top
level of the hierarchy, a graphical framework uncluttered by quantitative
details. However, these quantitative details are captured in the second level of
the hierarchy so that the influence diagram is a complete representation of the
decision model that contains all information necessary for analysis.

¢) The analysis of influence diagrams has been automated. This automation is
greatly facilitated by the symbolic computation and data structure properties of
the Lisp programming language.

All of the advantages of the influence diagram discussed above can be traced to a
coupling together of these five fundamental elements.

Two alternative languages for modeling decision problems are trees and the
probability calculus. Trees have an advantage in that they can easily represent and
exploit asymmetry which influence diagrams cannot. On the other hand, influence
diagrams are more effective than trees in representing and exploiting conditional
independence among model variables. Trees and influence diagrams are different
languages and tend to focus the modeling activity on different aspects of the problem.
Trees focus attention on the timing aspects of the events in the model. They are useful
for considering scenarios of events. Influence diagrams focus attention on the

interrelationships between the variables in the problem, the dependency and information

R N
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structure of the problem. As discussed previously in this section this structure is often
the most critical aspect of a model.

The probability calculus is of course much more general than influence diagrams.
An example is the fact that influence diagrams cannot represent continuous time models
which are quite common (continuous time stochastic control). Also, analytical results
can be obtained for models formulated in the probability calculus. The influence
diagram can provide only numerical solutions. However, for problems with even
moderately complex dependency and information structures, formulation and analysis
using only the probability calculus becomes very difficult and trees or influence
diagrams become necessary.

These advantages of influence diagrams motivated the attempt to apply influence
diagrams to the modeling of a very important class of decision problems, decision

processes. Decision processes are introduced in the following section.

1.2 DECISION PROCESSES

Most of the decision processes encountered in both theory and practice are Markov
decision processes (MDPs). An effective way to define an MDP is by use of an
influence diagram. The influence diagram for the MDP is shown in Fig. 1.4. This
diagram represents a four stage, finite horizon MDP (infinite horizon MDPs are not
uncommon). Note that each stage has associated with it a random variable (the state
variable), a decision vanable and a deterministic expected stage reward. At each stage
the process is in some state x(k) and decision d(k) must be made. The arc from x(k) to
d(k) indicates that the decision maker has available the outcome of x(k) before making
decision d(k). The decision maker will receive reward r(k) based on the current state
x(k) and the alternative chosen for d(k). The next state of the process, x(k+1), is a

random variable conditioned on the current state and decision, x(k) and d(k). The value
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function of the problem is a deterministic function of the stage rewards. It is usually

their sum but sometimes their product.

x(0) x(1) x(2) X(3) x(4)

d(0) d(1) d2) d(3)

v v
r(1) ) @

Figure 1.4. Influence diagram representation of an MDP.,

For deterministic decision processes, the properties of the maximization operator
allow decision processes with a broad range of separable value functions to be solved
using dyn:mic programming. However, for stochastic decision processes, the
properties of the expectation operator must be considered. These properties are much
more restrictive than those for maximization. Thus, dynamic programming can only be
applied to those stochastic decision processes that have a value function that is a sum or
a product. Since in this thesis we only deal with stochastic decision processes, we use
separable to describe value functions that are either sums or products. Note that the
addends or factors in separable value functions might themselves be separable.

An important concept in the consideration of MDPs is the Markov assumption.
This assumption is that given any x(k) the future evolution of the process is
independent of the past. Considening the presence of the implicit arcs in the influence

diagram of the MDP in Fig. 1.4 (e.g., d(3) actually has predecessors x(0), d(0), x(1),
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d(1), x(2), d(2) and x(3)), it is not clear that the Markov assumption holds. However,

it is known that to find the optimal alternative for d(3) only v(3) is maximized and not
V. Since v(3) is independent of all the variables that precede x(3) given x(3), the
outcomes of these variables can be ignored when making decision d(3). Extending this
line of reasoning all implicit arcs in the diagram in Fig. 1.4 can be ignored. Now, it is
clear that all paths from variables preceding x(k) to variables succeding x(k) go through
x(k), that is, given the present, the future is independent of the past.

A generalization of the MDP model is the partially observable Markov decision
process (POMDP). The POMDP model is a more realistic model than the MDP model
for many decision problems. As an influence diagram, a finite stage POMDP is

represented as in Fig. 1.5.

x(0) x(1) x(2)

Z(0) z(1) 2(2)

d(0) d(1) d(2)

o) r1) @

Figure 1.5. The influence diagram of the partially observable Markov
decision process.

The distinguishing feature of the POMDP is the fact that the realization of the state

variable x(k) is unknown to the decision maker when decision d(k) must be made.
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Instead, the decision maker only knows the outcome of the observation variable z(k)
which is probabilistically dependent on x(k). As before, the next state x(k+1) depends
on x(k) and d(k). Note that the observation process is under the control of the decision
maker. The expected stage reward depends on the current state and decision plus the
observation and state at k+1. Once again the value function is a deterministic function
of the stage rewards and is usually a sum or a product.

There are several other common variations to the standard MDP structure. A
common example is if the state variable at k+1 depends not only on the state and
decision at k but also on state and decision variables in stages preceding k. This is
called time lag. An instance of a decision process with time lag is illustrated by the

influence diagram in Fig. 1.6.

d(0) a(1) d2) d(3)

SNRG ®

\%

/
©

Figure. 1.6. Influence diagram of a decision process with time lag.

Other decision processs have a unique structure that is notably different than an
MDP. Such a decision process from an actual application (NASA's Voyager Mars

project) is shown as an 1 Mfluence diagram in Fig. 1.7.
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s(0) P s(1)] s(2) s(3)
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Figure 1.7. Influence diagram of a decision process from the Voyager
Mars decision analysis.

The previous paragraphs indicate the broad scope of the class of decision problems
that come under the heading decision processes. Rather than state a formal definition
of decision processes, the defining characteristics of such models will be stated.

A decision process is a decision problem in which the dominant structure is a

sequence of similar stages indexed with a countable set, usually discrete time.
Associated with each stage is a set of decision variables. The decision variables in the
entire decision process are ordered. This ordering has the feature that all decisions
associated with stage t» follow all decisions asociated with stage t] whenever tp > t;.
Also, associated with each stage is a set of random variables. Finally, associated with
each stage is a set of rewards, deterministic functions of the other stage variables. The
dependency and information structure between stages may be stage dependent. The
probability distributions of the random variables may also be stage dependent. The

outcome of the random variables and the action space of the decision variables are
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usually discrete and often finite. They can in general be uncountable. The objective
function of the problem is a deterministic function of the stage rewards.
The scope of this thesis is restricted to discrete time decision processes with finite

state and action spaces.

1.3 GOAL OF THIS RESEARCH

The past two years has seen the integration of two powerful ideas, symbolic
computation and influence diagrams. As a result, influence diagrams can now not only -

be used as a language for formulating decision problems, but also as a language for

automating the analysis of decision problems on the computer. This is one of the
foundation elements of the advantages discussed in Section 1.1. This thesis research wmd
was motivated by the potential of applying these advantages to the formulation and
analysis of decision processes. o ,:'.
The key property of stochastic decision processes is that the value function is the
sum or product of the stage rewards; that is, the value function is separable. This

property is the key to the efficient solution of decision processes and is the basis of

stochastic dynamic programming. In the single value node influence diagram the
separable nature of the value function is hidden inside the value node and cannot be
exploited. New constructs must be developed so that the separable nature of a value
function can be represented in the influence diagram of a decision problem. Influence

diagram reductions and algorithms can then be written that utilize this new structure.

This will allow decision processes to be efficiently solved within the influence diagram

framework.
In short, the goal of this thesis is to extend influence diagram theory so that

decision processes can be effectively formulated and analyzed as influence diagrams.
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1.4 SUMMARY OF RESULTS

The concept of a subvalue node has been added to influence diagram theory. This
allows the separable nature of a value function to be explicitly represented in the
influence diagram. New influence diagram reductions have been developed that exploit
this additional structure. Also, an algorithm has been developed to solve influence
diagrams with subvalue nodes.

This extension of influence diagram theory to include subvalue nodes is significant

for several reasons. From the decision analysis perspective the subvalue node concept

]

allows a full and simple exploitation of all separability in the value function of a e

";.‘

decision model. Influence diagram theory previous to this thesis allowed exploitation
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of the conditional independence in a decision model. The combination of these two

)

iy

features allows any efficiency that could be gained by applying coalescence to a tree

- %
.'-'_-\.:
representation of a decision model to be also gained in a influence diagram I
RS
representation of the model. e

Importantly, the fact that influence diagrams with subvalue nodes allow easy
exploitation of additive and multiplicative separability, means that algorithms can be
designed that automatically recognize the opportunity for applying the principle of
optimality when solving influence diagrams. This substantially increases the
accessibility of dynamic programming to the analyst. For example, consider the MDP
with random rewards in Fig. 1.8. (this example is discussed in detail in Section 5.1). 5';-1".
The algorithm developed in this thesis solves this problem using a sequence of
operations that correspond precisely to solving the problem by using dynamic
programming. However, by using the influence diagram to solve the problem, the user
did not have to know anything about dynamic programming or MDPs. The only
requirement put upon the user was to appropriately represent the fact that the value ,_

function is either a sum or product of the random stage rewards.
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Figure 1.8. An MDP with random rewards.

From the decision process perspective, modeling these problems as influence
diagrams allows simple formulation and solution of nonstandard decision processes.
Also, it allows the conditional independence among the variables in a stage and between L
the stages to be exploited. This results in significant savings in terms of data storage
requirements and computational complexity in solving certain decision processs.

The influence diagram representation of the standard MDP is shown in Fig. 1.4.

Without using influence diagrams it is difficult to automate the application of dynamic

N
programming to problems that do not fit this standard MDP format. Now, the e
influence diagram facilitates the automation of «lgorithms that can easily solve problems e
with more complex dependency and information structures than that of the standard

MDP. It allows us to break up the single state variable of the standard MDP into its
separate variables and take advantage of the conditional independence among them.
This can result in significant efficiencies. For the three stage decision process shown in
Fig. 1.9 (this example is discussed in detail in Section 5.4) the ability to break up the

single state variable into the three variables d(k), f(k) and s(k) decreases both the data
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storage requirements and computational complexity of solving the problem by two

orders of magnitude.
fo f1 2
do dt d2 K.
Q) 2 m
o0 ol 02 ;ﬂ
r0 r1 r2 ":‘;

+
\

Figure 1.9. Three stage decision process with the state variable broken
up into its component variables.

Also, for the same three stage decision process consider the presence of another

variable in the model that destroys its nice structure as illustrated in Fig. 1.10. An

important strength of the theory and algorithm developed in this thesis is that it allows

decision processes with complications such as this to be routinely solved on the

computer. E;J

19



R A T T St I 1 e e I T e i M LA i N PR D R L D D ITR TS AR 5 Bl Ak it bt L Aol T e~ sas o aie Sl st o o3 2 328 2 R 20 g |
- * o

P

o
Oy

fo f1 f2

do at d2

L5 My
e

bz

P

[42]
[\
N
[]
PR

00 of 02
r0 r r2
A
Vv

Figure 1.10. A decision process with an added variable.

Finally, the influence diagram with subvalue nodes provides an insightful

framework for considering many of the critical characteristics of various decision

processes.

1.5 RELATED WORK

Other graphical techniques have been developed for assisting in the analysis of dynamic
systems. The most important example is structural modeling. This modeling language
and technique was introduced by Forrester [F1]. Since then it has been broadly applied
to the analysis of large scale social, politicul and economic systems. A structural model
consists of a collection of elements and the pairwise relationships between those

elements. Models are represented as directed graphs with labeled arcs. The emphasis
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is on the qualitative and structural aspects of the problem and identifying the existence
and strength of relationships between the elements in the model. The analysis
technique used on structural models is almost exclusively simulation. A host of
software tools exist for simulating structural models as well as for providing results on
structural properties of the model.

Influence diagrams with the extensions developed in this thesis also capture the
structural and qualitative aspects of a dynamic system. They do not capture these
aspects, though, quite as intuitively as structural models for most decision makers.
This small loss in intuition is due to the mathematically precise definition of the arcs and
nodes in an influence diagram. It is this precise mathematical definition, however, that
is at the foundation of the powerful advantages of influence diagrams as detailed in the
first section of this chapter. Quantitative analysis in influence diagrams benefits from a
coupling of graphical and mathematical techniques. Analysis is performed within the
same framework that captures the qualitative and structural aspects of the problem. On
the other hand, quantitative analysis can be performed on the mathematical component
of a structural model only after it has been extracted from the overall structural model.
Also, optimization can be performed in the influence diagram model of the problem.
Structural models do not contain the concept of a decision variable as separate from
chance or deterministic variables and no theory exists for optimization within the
structural modeling framework.

Yamada has used structural models in the analysis of dynamic descriptor variable
systems [Y1]. A mathematically precise graphical representation is used to determine
the structural controllability of the dynamic descriptor system. If in the analysis,
attention is restricted to a subset of all influence diagrams, some of Yamada's main
graphical results can be developed using influence diagrams instead of the graphs used

by Yamada. These influence diagram representations have the added advantage of
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N containing more information than Yamada's graphs. This additional information is in ‘,;:‘
y L4
' '-"'(
fact relevant to the critical assumptions in the theory of structural systems. Thus it ;{,
appears that it might be fruitful to investigate the application of influence diagrams to ;';,)
& structural controllability theory. xj:
- oy
., The greatest obstacle in applying the theoretical power of dynamic programming to e
- the solution of sequential decision problems is the high dimensionality of the required ‘--
>3 :'." h
- computations for even some relatively simple problems. The main current of research -
': in dynamic programming at present is directed at this problem. The approaches to N
-
- solving this problem fall into three major categories: decomposition, analysis and ‘_‘:,',
approximation. jiif
S
:‘ The most active area of research is decomposition. The sequential decision - ;,j_’_}
- problem is decomposed into a set of subproblems and a mechanism is constructed to ‘_-\;.‘
’_".: coordinate among the subproblems. The overall problem is then solved iteratively by :‘.‘:‘\'{'.
; RS
- solving each of the subproblems independently, coordinating these partial solutions ‘_:
N
S through the exchange of information between the subproblems, again solving each o
e A
- subproblem and so forth. The problem can be decomposed in many different ways e
- including by stage [B4], by partitioning into subsystems [S1], [K1], by partitioning the N
- state space [B2] or by decomposing the linear program resulting from applying :
-:;: dynamic programming to a Markov decision process [D1]. g .:'j'.f
< The analytical approach involves attempting to solve the original decision problem :ji::{f-
T by not using dynamic programming at all. Instead a stochastic version of the familiar E—-
a maximum principle of deterministic optimal control is applied to the problem {H1]. The
5 approximating approach involves either an approximation of the state space [H2] or an Z;*I
N approximation to the optimal policy as in adaptive control [T2]. There are also
- algorithms that exploit the special mathematical structure of specific classes of 'Z':-::'
. o
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problems. An example of this is the algorithm of Sondik and Smallwood for the "‘
solution of partially observable Markov decision processes [S4]. \
The subvalue node influence diagram developed in this thesis supports a kind of g
decomposition. The state variable of an MDP is usually a vector of random variables. ;.:
The influence diagram with subvalue nodes allows the analyst to treat the elements of i'
this vector as separate variables. This allows the conditional independence between E-!
these variables to be exploited, resulting in significant savings for some problems in _
data storage requirements and computational complexity. Lj:-.:':_
Solving a decision problem represented as an influence diagram can be looked at as L
removing all the chance and decision nodes by expectation and maximization _j‘
respectively. The computational resources required to solve the decision problem are ‘
extremely sensitive to the order in which the chance and decision nodes are removed
(note that the order is partially specified by the information structure of the problem). r
There is ongoing research by Ezawa [E1] into the problem of developing algorithms L’
that produce the optimal node removal ordering. Because of the repetitive structure of
decision processes it is usually straightforward to find a sufficiently good ordering of \L
node removals for these problems. However, at some point it might be fruitful to apply ).‘.

Ezawa's work to influence diagrams with subvalue nodes.
Until recently, analysis of influence diagrams was restricted to the class of decision

problems whose chance and decision variables had finite outcome and action spaces.

The class of problems for which influence diagram analysis is possible has recently
been expanded to include those whose random and decision variables have outcome
and alternative spaces equal to the real numbers with all chance variables being

normally distributed [S3]. Also, the value function must be quadratic. This work is DN
significant in that it allows a large class of stochastic control and stochastic filtering s

problems to be formulated and analyzed in terms of influence diagrams. To the
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“ present, this work does not explicitly represent the separable nature of the value :.:.-:.
o T
ﬁ function. The benefits of subvalue nodes for these normal influence diagrams should fj:f-

. . t’ -
= be investigated. oy
:',:Z::E
:\ -:,:.'
i ]
v Influence diagram theory has been extended to include subvalue nodes. This l«-
;Tj allows representation and efficient analysis of decision problems with separable value :Lt_j:’.j
:'-'. functions. Chapter 2 develops the subvalue node concept. Chapter 3 discusses the o
. issues involved in solving influence diagrams with subvalue nodes. Chapter 4 L“
- examines the concepts of coalescence and the principle of optimality in decision \
.'-: problems and how they relate to influence diagrams. Finally, Chapter 5 presents _."'
i several applications. e
:
' NOTES AND REFERENCES
\ Introduction. The seminal works on decision analysis include a collection of papers -
edited by Howard and Matheson [H6], a book by Pratt, Raiffa and Schlaifer [P1] and a f:j :
=
i book by Raiffa [R1]. The collection edited by Howard and Matheson contains the s
references for the listed examples: seeding of hurricanes [H7], Voyager Mars [M2],
::-:: synthetic fuels program [T1] and research and development [B5]. -
“‘ Section 1.1. Influence diagrams were first introduced in a report by Miller, et al -
[M3]. The best references are papers by Shachter {S2] and Howard and Matheson
[H4] and a thesis by Olmsted [O1]. The paper by Shachter contains the first algorithm <
\.‘. .;‘:_:
E for solving decision problems as influence diagrams. A well documented application of 'i;-‘;
;?_f influence diagrams is the thesis by Claudio [C1]. The definition of an influence :i‘.:!_
r\: ::':::‘
::',- diagram presented here is due to Shachter [S2] which contains a precise definition.
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Section 1.2. An excellent review of the literature on the development of Markov
decision process theory is in Heyman and Sobel [H2]. The most readable introduction
to Markov decision processes and dynamic programming is the book by Howard [H3].

A superb contemporary treatment of the same subject is the book by Bertsekas [B3]. A

review of the literature on partially observable Markov decision processes is in
Monohan [M4]. The state of the art algorithm for solving POMDPs was developed by
Sondik and Smallwood [S4].

Section 1.5. A survery of structural modeling is Lendaris [L1]. The remainder of

the references for Section 1.5 are contained in the text of the section.
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Chapter 2

The Subwvalue Node

The current chapter motivates the introduction of subvalue nodes into influence
diagrams. The special properties of the expectation and maximization operators that
make subvalue nodes useful are then discussed in terms of the influence diagram. This
discussion then serves as the basis for defining allowable subvalue node structures. A
set of reductions are developed for manipulating influence diagrams that take advantage
of this new subvalue structure. An example is then solved using the subvalue node
structure and reductions. Finally, automatic introduction of subvalue nodes is

presented.

2.1 MOTIVATION FOR SUBVALUE NODES

This research began with the attempt to perform dynamic programming on a Markov
decision process (MDP) in an influence diagram framework. This was not possible
with the single value node influence diagram. To make it possible, it was natural to
introduce the subvalue node as a new influence diagram construct. To demonstrate the

effectivencss of this concept the MDP example is presented.
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Consider the following MDP represented in the probability calculus.

AAR e

Objective function
V =10(x(0),d(0)) + r1(x(1),d(1)) + r2(x(2),d(2)) + v3(x(3))

- -

l' ’l-

v v
A

with joint probability distribution expansion
P{x(3)Ix(2),d(2)} * P{x(2)Ix(1),d(1)} » P{x(1)Ix(0),d(0)} * P{x(0)}
and information structure
d(2){x(2),d(1),x(1),d(0),x(0)}
d(D)I{x(1),d(0),x(0)}
- d(0)/x(0)

LI e TV W w -
".-""'l"‘
. LN A Y

r. where d/X means that the outcomes of the variables in X are known to the decision
maker when decision d must be made. The graph of the influence diagram of this MDP
is shown in Fig. 2.1. Note the multiple value nodes. These are the subvalue nodes.
The subvalue nodes represent expected values. They contain a conditional expectation
that is a component in the overall value function of the decision process. They are
similar in purpose and treatment to the value node in the single value node influence
diagram. There are two special classes of subvalue nodes, sum nodes arnid product

nodes. Sum nodes, (e.g. v(0), v(1) and v(2) in Fig. 2.1) are special subvalue nodes

with their functions being the sum of their predecessors. Product nodes (which do not

.
-
‘.
E

appear in Fig. 2.1) are subvalue nodes with their function being the product of their
predecessors. We use V to designate the set of all subvalue nodes in an influence

diagram. This set includes the traditional value node.

ARNE ORI

R
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R
Y
P
O
x(0) x(1) x(2) x(3) F
d(0) d(1) d(2)
(o) (1) ) (3) )
l‘.l-i“.-g
+ + + ;
v(0) v(1) v(2) =
Figure 2.1. Influence diagram for an MDP. 7:1'_-.-."}
POREY
The standard solution technique for MDPs is dynamic programming. In dynamic j'.::;;:i
programming v(2), v(1) and v(0) are found recursively. The maximum expected value
for the MDP is v(0). In more detail, the first step is to find v(2). We have from
standard dynamic programming
v(2) = Md(2)ix(2) {r(2) + Ex(3)x(2),d(2) [v3)]}

The Mg(2))x(2) operator is the maximization operator with respect to d(2) with the

outcome of x(2) being known to the decision maker. Ex(3)(x(2),d(2) is the conditional

expectation operator with respect to x(3) conditioned on x(2) and d(2). Consider this
first step of the dynamic programming algorithm in terms of the influence diagram in
Fig. 2.1 and Fig. 2.2a-c.

First, expectation is taken over v(3) with respect to x(3). Variable v(3) inherits the
conditioning of x(3) on d(2) and x(2). This expectation corresponds to removing x(3)

into v(3) in the influence diagram as illustrated in Fig. 2.2a. Next, r(2) and v(3) are
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added together. This corresponds in the influence diagram to removing r(2) and v(3)
into v(2) as in Fig. 2.2b. Now the maximization of this sum over d(2) conditioned
only on x(2) is performed. In the influence diagram d(2) is removed into v(2). This
produces the influence diagram in Fig 2.2c which shows v(2) conditioned on x(2)
only. This is exactly what we wanted and so the first step of the dynamic

programming algorithm is complete.

x{0) x(1) x(2)

d(0) d(1) d(2)

{0} (1) 12} v(3)
+ + +

v(0) v(1) v(2)

(a) The MDP after expectation of v(3) with respect to x(3).
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(b) The MDP after summing r(2) and v(3).
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x(0) x(1) x(2)

r(0) r(1) v(2)

+ + Y

v(0) v(1) E—j

(c) The MDP after maximization of v(2) with respect to d(2). .
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Figure 2.2. One step of the dynamic programming algorithm.
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The important thing going on is that the value function has been decomposed and
the maximization and expectation operations necessary to solve the problem by
dynamic programming are being carried out over components of the value function
instead of the entire function. Single value node influence diagram theory was not rich
enough to capture this. Itis necessary to decompose the single value node into a set of
subvalue nodes and develop the influence diagram reductions necessary to exploit this
new structure. This is the subject of this thesis.

These operations of taking a maximization or expectation over only a component of
the value function are exploiting the special properties of the maximization and
expectation operators when applied to arguments which are sums or products.
Remember that we call a value function that is a sum or product separable and that the
arguments of the separable value function might themselves be separable. We refer to
the expectation and maximization properties that pertain to separable value functions as
their separability properties. These separability properties will be covered in detail in
the next section. They are important in that they allow maximizations and expectations
to be performed over only a component of the value function inste: d of the entire

function under centain conditions. This significantly reduces the work necessary to

solve a decision problem.
In order to use these properties in influence diagrams, it is necessary to represent

the separable nature of the value function. A natural technique for doing this that is

E consistent with influence diagram theory is to use sum and product nodes. The last

3 example illustrated the effectiveness of this technique. This places the separability

'. information in the graph of the influence diagram instead of in the data frame of the

! influence diagram. Thus, it is possible to determine what expectation or maximization
operations can be performed at each step by examining only the topology of the graph.
' This is a desirable property of the single value node influence diagram that allows
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graph theory techniques to be used in analyzing influence diagrams. The subvalue ;.-‘;_4

node structure provides the foundation for influence diagram reductions that exploit the %:-i

separability properties of the expectation and maximization operators. The subvalue A

node structure together with reductions to take advantage of it will make possible _‘.

significant improvements in efficiency in solving decision problems with separable é

value functions as influence diagrams. The next section presents these separability E~

properties using influence diagrams with subvalue nodes while at the same time ﬁ

motivating the types of subvalue node structures that are useful. ‘_“

b L'

[ 2.2 SEPARABILITY PROPERTIES AND SUBVALUE NODE i

- STRUCTURES L

o

N As motivated in the last section, influence diagram structures are needed that support E:

P taking advantage of the separability properties of the expectation and maximization

: operators in order to make the solving of certain decision problems as influence

P diagrams more efficient. In this section these expectation and maximization properties *‘

: are presented in terms of the basic subvalue node concepts introduced in the last v
i section. Discussing these properties in terms of the subvalue node influence diagram

motivates the development of the remaining necessary subvalue node structure.
For this thesis we assume that there are no deterministic nodes in the influence

diagram, only chance, decision and subvalue nodes. This costs us very little. A

deterministic node is actually just a special case of a chance node.
The first useful property of the expectation operator is that the expectation of a sum

is equal to the sum of the expectations. The example in Fig. 2.3 should help make the

conditions of the theorem clear. Formally, we have the following. E_
-
32 o
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Property 1. Given the set of subvalue nodes R=ru {rg,ry,...,rN} such thatr
is a sum node, C(r) = {rg, ry,. .., N} and S(rj) = r for each rj in
{ro. 1, ..., N}, then applying Ex|C(x) to R is equivalent to applying Ex|C(x) to
eachrj in {rg,ry,...,IN}.
Proof.  Applying ExiC(x) to the setR of subvalue nodes is equivalent to
Exjc(x) [r(rQ, 115 . . ., TN)]
= Exjc(x) [Zi= 0N Tl
because r is a sum node
=2 = O,N Exjc(x) [ril

because of the linearity of expectation operator. This is equivalent to applying Ey|C(x)

to each subvalue node rj in {rg, ry, ..., IN}.8

<P

O <
P

Figure 2.3. The set of subvalue nodes R in Property 1.

A similar but more restrictive property holds for product nodes. If only one

predecessor of a product node has x as a functional predecessor then the Ex|C(x)

operator applied at the product node can propagate backwards through the graph to that

single predecessor.
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Property 2. Given the set of subvalue nodes R =r U {rg, r1, ..., N} and the
chance node x such that r is a product node, C(r) = {rg, r1, ..., IN}L S(rj) =T
for each 1y in {rg, 1y, . . . , IN} and that x is not a functional predecessor of any rj
in {rQ, 71, . .., IN-1} then applying Ex|C(x) to R is equivalent to applying
Ex|C(x) to IN-

Proof.  Applying Ex|C(x) to the set R of subvalue nodes is equivalent to
Ex|C(x) [r(tQ, 11, - - -, IN)]
= Ex|C(x) [TTi = 0,N i)
because r is a product node

= ExjC(x) [(ITi = ,N-11i) * tN]
= (ITj = o,N-1 ) * Ex|C(x) ['N]

because x is not a functional predecessor of any 1y in {rg, r1,...,IN-1}. Thislast

term is equivalent to applying ExiC(x) to subvalue node rN.®
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all subvalue
node predecessors
of r0 and #

3 G NN AN .-
F eSS :

Figure 2.4. Example for Property 2, expectation over a product node.

These are the only three properties of the expectation operator that are necessary for
exploiting the separability of value functions. Next, two properties of the maximization

operator are presented.

First we have that if the Mq(q) operator is applied to a sum node and only one
predecessor of the sum node has a directed path from d then the Mgij(q) operator can
propagate from the sum node backwards through the subvalue graph to the single

predecessor.

Property 3. Given the set of subvalue nodes R =1V {rg, 11, ..., N} and
decision node d such that r is a sum node, C(r) = {rg, r{, ..., TN} S(ry) =t for
each rjin {rg, r1,...,rN} and d € W(rj) for any rjin {rg, ry, . . . ,IN-1} then

applying Mgij(d) to R is equivalent to applying Mdji(d) to TN-
Proof.  Applying Mg j(g) to the setR of subvalue nodes is equivalent to

Mdjid)y [r(ro. 11, - - s ™)l

=Mq|1(d) [Zi=o,Nril
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because r is a sum node
=Mgjid) [(Zi=0,N-17)+N]
=(Zi = O,N-1 ) + Mdji(d) [mN]
because d € W(r;) for any rj in {rg, rq, ..., N-1} and so these rj's do not vary with

d. This last term is equivalent to applying Mqj[(q) to IN.®

Figure 2.5. Example for Property 3, maximization over a sum node.
The same property holds for the case in which V is a product node instead of a sum
node. In this case it is necessary that the predecessors of r are always nonnegative.

Property 4. Given the set of subvalue nodes R =r vy {rg, ry,..., N} and ‘_'E-'_'.;-‘

decision node d such that r is a product node, C(r) = {rg, r{, ..., TN}, S(rj) =1

and r; 2 0 for each rjin {rg, ry, ..., N} and d € W(rj) for any rj in
{r0. 11, ..., rN-1} then applying Mqi1(d) to R is equivalent to applying Mj1(d) '_EE'{-.:T”

to IN.
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Proof.  Applying M{|1(g) to the set R of subvalue nodes is equivalent to

Mgj1(q) [r(ro, r1, ..., N)]
=Mqj1@) [ITi =o,N 1l
because r is a product node
=Mgji@) [(Tj = o,N-17)) * NI
= (ITi = 0,N-1 1) * Mgji(d) [rN]
because d ¢ W(r;) for any rj in {rg, r], ..., N-1} and so these ri's do not vary with
d. This last term is equivalent to applying Mqj1(g) to rN.®@

The basic subvalue node ideas that have been developed so far (namely subvalue
nodes, some of which are sum nodes and some of which are product nodes) were
enough to represent the relevant properties of the expectation and maximization
operators in influence diagrams. For purposes of subvalue node influence diagram
reductions and the subvalue node influence diagram algorithm to be developed later, it
is convenient to restrict the way subvalue nodes are allowed to be used in the influence
diagram.

Note that the above properties can be applied recursively. Thus in the influence
diagram in Fig. 2.6, the My operator can propagate from V to w then to s. Likewisc
the Ex|y operator can propagate from V to w then tor. One can see that fairly complex
subvalue structures could thus be attacked with the four properties that have been

developed.
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Figure 2.6. A subvalue node influence diagram.

The subvalue structure comes from breaking up the value node into a graph of
subvalue nodes. This graph is a subgraph of the influence diagram. Each subvalue
node in this graph is allowed have only one successor, restricting the subvalue node
graph to be a tree. This restriction is rather artificial but is not a serious issue in
formulation and greatly simplifies development of the subvalue node influence diagram
reductions and algorithm.

Now, an expectation or maximization operator can never propagate backwards
through the graph past any node other than a sum or product node. Therefore if a sum
or product node does not have a sum or product node successor, the sum or product
nature of the node cannot be used. Therefore it never makes sense to have a sum or
product node that does not have a sum or product node successor. Extending this

reasoning, it is clear that every sum and product node should have a path to the value
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node such that every node on this path including the value node is either a sumor a
product node.

Similarly, for any subvalue node that is not a sum or product node to be useful is
must have a path to the value node such that every node on the path including the value

node is either a sum node or product node. If this is not the case then no expectation or

RTINS S S S

maximization operator can ever be applied to the subvalue node so it might as well be a
normal deterministic node or not introduced into the influence diagram at all.

The preceding discussion can be summarized in the following rules.

Rule 1. Each subvalue node except the value node has one and only one successor.

The value node has no successors.
i Rule 2. The successor of each subvalue node is either a sum node or a product node.

- Note that these two rules force the subvalue structure to be a tree. The "root” will
I be the value node and the "leaves” will be subvalue nodes that are neither sum or

- product nodes. An example of a subvalue node influence diagram that satisfies the

- above two rules is again Fig. 2.6. We add one more restriction to simplify things

.

i when maximizations are being performed on subvalue node influence diagrams that

- contain product nodes.

Rule 3. A subvalue node influence diagram is not allowed to have all three of the

following properties:

a) contains product nodes

b) contains decision nodes

5 ¢) contains subvalue nodes that are not guaranteed to be always nonnegative.

The subvalue node influence diagram thus provides the necessary structure to

represent the relevant sums and products in the value function. It has been shown that

R} _ ST
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. this structure works well with the relevant properties of the expectation and
maximization operators. Next is is necessary to use these properties to develop
reductions for the influence diagram with subvalue nodes that will allow us to solve

decision problems.

2.3 REDUCTIONS FOR INFLUENCE DIAGRAMS WITH
SUBVALUE NODES

s " WYYV S 7 Y Tammewy rw s

The idea of an influence diagram with subvalue nodes has been developed and its
_I_ usefulness has been suggested. Also, the special properties of the expectation and
: maximization operators when applied to separable value functions have been discussed
- in terms of the influence diagram.
D In order to solve decision processes represented as influence diagrams with
subvalue nodes the following reductions are required:
1) arc reversal between chance nodes

2) chance node removal by summation

LS
L}

3) chance node removal by expectation W

4) decision node removal by maximization

This section develops these reductions. Aic reversal does not involve the value

PR U B Y S

function in any way and so remains the same operation as in the influence diagram with

a single value node. Chance node removal by summation likewise does not involve the

“~ RS

value function and so is not effected by the subvalue nodes.
Removing a chance node into a subvalue node on the other hand is different than
; removing a chance node into the value node in the single value node influence diagram.
' An important difference is that when a chance node is a direct predecessor of a
- subvalue node, it can be removed into that subvalue node by expectation under certain
conditions even though it has other successors. This is truc even when some of these
i
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successors are decision nodes. Thus when the subvalue node's dependence on the S
chance node is removed (i.e. the arc from the chance node to the subvalue node is S

removed) the chance node may still be in the diagram. An example of this is from

C O . *. . "R &
>

Markov decision processes (MDPs). The MDP is frequently formulated as in Fig. ;::;I:\
g 2.7a. In this case it is common to simplify the stages by taking expectation of each ;::}:I:,

reward r(k) with respect to x(k+1). In the influence diagram this corresponds to

R X0

removing the x(k+1) to r(k) arcs resulting in the influence diagram in Fig. 2.7b.

l x(0) x(1) x(2) x(3) i‘

: d(0) d(1) d(2) s
0%
- AR
- _-,.".\ g
Ny 1(0) r(1) 1(2) r(3) %
i \ _
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Figure 2.7. Simplifying the stages of an MDP.

In general, the type of arc removal described above is useful for simplifying the

LR
ST

stages of a decision process whenever the stages are identical (a stationary decision

F process). However, in this thesis (with the exception of the POMDP example) the

reduction developed for taking expectation with respect to chance nodes requires that

T——

the chance node have only subvalue node successors. This reduction is formalized in

the following theorem, but first, the concept of a blocking product node must be

defined.

Definition. A blocking product node with respect to chance node x and subvalue

node r is a product node b with predecessors r and rp such that ry is on the

directed path from r to b and x is a functional predecessor of both ry and rp.

The significance of this concept is illustrated in Fig. 2.8. Node b is a blocking

product node with respect to r and x. The operator EjC(x) cannot propagate up the
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subvalue node graph tor. Itis blocked at b which is a function of x through two

predecessors.

Figure 2.8. Subvalue node b is a blocking product node with respect to
nodes r and x.

Theorem 1 (Chance Node Removal). If x is a chance node in an influence

diagram, and

a) x directly precedes the set of subvalue nodes R = {rg, ry, 12, .., N}

and nothig else

b) each directed path from an r; to the value node contains no blocking product
nodes with respect to x and j,

then x may be removed from the influence diagram by expectation of each rj with

respect to x conditioned on the conditional predecessors of x. Each subvalue node

r; inherits the conditional predecessors of x.

Proof. For chance node removal we have

cnew(v) = Cold(vy\ x U C(x)
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where CNeW(V) and C°1d(V) designate the new and old chance and decision node :;.ﬁ
predecessors of the set of subvalue nodes V. The set of subvalue nodes V represent 5-..
Y
the optimal expected utility of the problem. The optimal expected utility after removing ',:;n::i
is gi sy
X 1§ given by e
W
h
UNEW(Cew(V)) = Ey|cleW(yy [V] P
T
= Ex)c"Y(v) [Evix,c"W¥(v) [V]] ]
4
by expectation expansion l;ﬁ-.jf 1
b
= Exic(x) Evix,c"™Y(v) [VI] RS
= ExjC(x) [Evic®Md(v) V1] 2]
£y
This is equivalent to applying Ex|C(x) to the set of subvalue nodes V in the influence
diagram. We need to show that this is equivalent to applying Ex|C(x) to eachrjinR.
This is true if Ex|C(x) can propagate backwards through the subvalue graph from the

value node to each rj in R and is inconsequential everywhere else. Because there are no

blocking product nodes on the directed paths from rj to the value node, Ex|C(x) can
propagate to each rj in R by Properties 1 and 2. Now, x precedes each rj in R and
nothing else. Thus there is no directed path from x to any subvalue node not on a o
directed path from some rj in R to the value node. Thus ExC(x) is inconsequential at
any subvalue node not on one of the directed paths from an rj to the value node.® \1
The removal of a decision node in a subvalue node influence diagram is very Lj
similar to the same operation in the single value node influence diagram. The only s
difference is that the maximization is done only over one component of the value X

function.
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Remember that per Rule 3 in Section 2.2 it is not valid to have an influence diagram
with product and decision nodes and subvalue nodes which are not always

nonnegative.

Theorem 2 (Decision Node Removal). If d is a decision node in an influence
diagram, and
a) dis a conditional predecessor of subvalue node s and has no other
SUCCESSOors
b) all conditional predecessors of s, besides d, are informational predecessors
of d; thatis, C(s)\ d is contained in I(d)

then d can be removed from the diagram by maximization over s.

Proof. We have

Chew(V) = cold(v) \vd

The optimal expected utility after maximization overd is given by

Unew (Cnew (v)y) = MdiI(d) EV[d,Cnew(V) [V]

= Myjid) Evic®dvy [V]
= Mgj1(d) yold (cold (vy)

This is equivalent to applying the Myjj(d) operator to the set of subvalue nodes V in

the influence diagram. Now, there is a single path from s to the value node. Also, s is

the only successor of d. Therefore by Properties 3 and 4 of Section 2.2 applying

Mgji(g) to the set V is equivalent to applying Mgjj(d) to s. From the conditions 1(d)
C(s)\d. So, s depends only on variables known when decision d is made. Therefore,

the optimal expected utility after d is removed is represented by the set of subvalue
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nodes V with d removed into s by maximization of s over d. The optimal policy is

given by

d*(I(d)) « arg Mqji(q) [U®!d (COld (v))).m

Note that any elements of I(d) that are not elements of C°1d(V)\d do not enter into
the maximization operation and can be ignored. We refer to the arcs from these nodes
to d as forgettable arcs.

These are the only influence diagram reductions necessary to develop an algorithm
to solve subvalue node influence diagrams. The following example demonstrates how
the reductions can be used in solving a decision problem. The solution steps will be
presented in both influence diagrams and in the probability calculus. To simplify the

notation, if u is a subvalue node with conditional predecessors y, z we write <uly,z>

instead of Ey|y 7 [u].

x

Figure 2.9. Influence diagram for the example.
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The influence diagram for the example is shown in Fig 2.9. The first step is to take

-~

conditional expectation of the value function with respect to x

i

Il:
MENL RN |

Exly [<uly,z> + (<s|d,y> ¢ <r|x>)]

!

A

= Eyjy [<uly,z>] + Exly [(<sld,y> ¢ <r|x>)]

v w .
-

'l
Ll

= <uly,z> + (<s|d,y> ¢ Exly [<rix>])

= <uly,z> + (<s|d,y> ¢ <rly>)

L.
o

In the influence diagram this corresponds to removing x into r resulting in the influence

diagram in Fig. 2.10.

N
7]
.M _':‘." ."..' . '- '- 5
!

‘e
[ A
.

“r
«
]

.
z

. .
I e
4 T o i .
N 3 e

£ x
0/'
4, ) .
A Y.

Figure 2.10. Node x removed by expectation of r with respect to x. E..

Now, the predecessor set of r is a subset of the predecessor set of s and they have
the same successor. It is therefore of no use to keep these two nodes. This fact will be
explained in greater detail in Section 3.3. It is referred to as the subset rule. Functions

rand s are removed from the problem by multiplying them together
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<wi<sld,y>,<rly>> e
= <sld,y> ¢ <1ly> .:.'ff\

K

= <wl|d,y>.

In the influence diagram, nodes r and s are removed into w resulting in the influence

diagram in Fig.2.11.

Lot 2 SN
Pl WS 4
'y

R

—ye

el

<+

Figure 2.11. Subvalue nodes r and s are summed into w.

Now, the maximization of the value function over d can be performed

Mdly [<ulz,y> + <w|d,y>]
= <ulz,y> + Mdly [<w(d,y>]

*
= <ujz,y> + <w|d " y>

which we write as <uz,y> + <w[y>. This results in the influence diagram in Fig.2.12

with d removed into w.
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Figure 2.12. Node d removed by maximization of w over d.

Again because of the subset rule, u and w should be added.

<Vl<uly,z>,<wly>>
= <uly,z> + <wly>

= <Vl]y,z>

This produces the influence diagram in Fig. 2.13a with nodes w and u removed into V.
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Figure 2.13. (a) Subvalue nodes u and w summed, (b) Expectation of V
with respect toy, (c) Expectation of V with respect to z.

Now, the expectation of V can be taken with respect to y and then z
Ez Eyjz <Vly,2z>
=E; <Viz>

=<V>

All nodes are now removed from the influence diagram except for the value node
V. It contains the maximum expected value of the problem. Decision node d, though

removed from the diagram, contains the optimal decision for d as a function of y.

Assume that each chance node in the example has n outcomes and each decision node n

alternatives. If the example was solved with no subvalue nodes, the work required

would be on the order of n4 + n3 + 2n2 + n. If subvalue nodes were used but no
product nodes, then the order of the required work is reduced to n3 +3n2 + n. If sum
and product subvalue nodes are used the order of the required work is reduced further

o)
to 5n< + n,
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¥ 2.4 AUTOMATIC INTRODUCTION OF SUBVALUE NODES N
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There are two cases when it would be helpful if the algorithm for solving subvalue
node influence diagrams had the ability to automatically introduce new subvalue nodes
into the influence diagram. The first case is when two subvalue nodes must be
removed into their common successor when that successor has other predecessors.
The second case is when the user has an influence diagram in which all separability of
the value function is not represented explicitly with subvalue nodes.

It is common in a subvalue node influence diagram to have a sum or product node
with more than two predecessors such as V in Fig. 2.14a. It is also common in
solving subvalue node influence diagrams that two of the predecessors of such a sum
or product node need to be removed (that is, added or multiplied as the case may be).
In the figure r(2) and v(3) must be added before the maximization over d(2) can be
performed. One way to do this is to remove all the predecessors of V. But because V
has more than just the two predecessors r(2) and v(3) some separability of the value

function is being removed. This loss of separability is critical in some very common e

]
R}
A

20l
r

problems as it is in this example. On the other hand, if the user had input the influence

Thy)
N
’

4 Sy

B

1]

« SV

diagram as in Fig. 2.14b then there would be no problem. Nodes r(2) and v(3) could

be summed by removing then into v(2). In fact, there is no reason that the algorithm
cannot introduce such nodes without assistance from the user. Itis simple for the
algorithm to detect when introducing a node such as v(2) is necessary and simpler yet

to actually introduce it. This is formalized in the following theorem.
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Figure 2.14. Introducing a partial sum node in an MDP.

52



-

L LOS AN {OSuR Aty

L TR

I-‘
.

- P P I PR e B L R

el . . K. e
P . - - L N - . . - - - Nl - . .= K > * g - . e %
~ PR P R LN PRV AN AT AR W ST PUAEPOA PP TP PP CPR YL S PP L PG T PG,

Theorem (Automatic Introduction of Subvalue Nodes). If r is a sum or

product node with C(r) = {r(1), r(2), . . ., r(m), r(m+1), . . ., r(n)} then a valid
reduction of the influence diagram is to introduce node s into the influence diagram
such that s is of the same type as r (sum or product) with C(s) = {r(1), r(2), ...,

r(m)}. Node r remains the same type but C(r) becomes {s, r(m+1), ..., r(n)}.

Proof. r=r()+@2)+...+r(m) + r{m+1) +. ..+ r(n)

=s+r(m+l)+...+1(n)

wheres=1r(1) +(r2) +...+r(m) ®

Whenever it is necessary to remove a proper subset of the predecessors of a sum
node by addition, a new subvalue node should be introduced into the diagram to
represent this partial sum. Summing the appropriate predecessors will then be
performed by removing them into this new subvalue node. The parallel argument
holds for product nodes and their predecessors.

There is another case when it is useful for the algorithm to introduce subvalue
nodes. This is the case in which the user does not represent all the separability in a
value function by using subvalue nodes. Take for example an MDP with random
rewards. The user might input this problem as the influence diagram in Fig. 2.15a.
The first step to solve the problem is to take expectation of the value function with
respect to r(2). However, if this is done directly then d(2) becomes a predecessor of
V. It will not be possible then to perform the maximization over d(2) until r(0) and (1)
are removed. This however results in a single value node influence diagram and the

advantage of the separable value function has been lost. The resolution to this dilemma

is for the user to input the problem as in Fig. 2.15b with the expectation of random

variable r(2) represented explicitly as a subvalue node in the diagram.
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Figure 2.15. An MDP with random rewards.

In fact, in order to ensure that all separability of the value function can be taken
advantage of by the algorithm, there should be subvalue nodes in the influence diagram
to represent the expectations of r(0), r(1) and r(2). In general, for the same reason, all
sum and product nodes should have only subvalue node predecessors. However, there

is no need for the user to be responsible for checking for this condition. The algorithm
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developed in this thesis preprocesses the subvalue structure to ensure that all sum and
product nodes have only subvalue node predecessors. Only subvalue nodes that are
not sum or product nodes are allowed to have chance and decision node predecessors.

Note that in the above problem, the influence diagram might have been input with
V as an ordinary value node instead of a sum or product node. If, however, the
function for V in the data frame of the influence diagram is in the proper algebraic
form, it is easy to write software that parses the user's value function and builds a
subvalue tree if possible. This has been implemented as part of the software developed
in this thesis on the Macintosh computer running ExperLisp. An example is given in
Section 5.1.

Note that this parsing and the subvalue structure checking described in the last
paragraph work together. If the function associated with the value node or a subvalue
node is a sum or product, then that subvalue node becomes a sum or product node as
appropriate and new subvalue nodes are introduced if necessary to ensure the new sum
or product node has only subvalue node predecessors Also, whenever a sum or
product node is found that does not have only subvalue node predecessors, new
subvalue nodes are introduced so that it does. The functions associated with these new
subvalue nodes are then checked for being sums or products.

Thus, the first step of the algorithm presented in Chapter 3 is to preprocess the
value structure of the influence diagram, generating and checking the subvalue structure
to ensure that all separability in the value function is appropriately represented. We
refer to this preprocessing as subvalue structure generation.

Blindly introducing subvalue nodes in this fashion never increases the size of the
largest operation required to solve the influence diagram and it usually decreases this
sizc. However, it may increase the number of operations required to solve the

influence diagram. Therefore, whether or not it is appropriate to perform this
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preprocessing depends on the problem. At this time, it is left to the user to decide
whether or not to use this preprocessing.

One final note is that the exponential of a sum and the logarithm of a product can be
treated as products and sums respectively by using the appropriate transformation. The

software developed for this thesis can handle these cases.

In this chapter we have developed the necessary influence diagram structures and
reductions to represent and solve efficiently decision problems with separable value
functions. In Chapter 3 an algorithm will be presented to solve these subvalue node

influence diagrams.

0 Aidrans  ENShaces
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NOTES AND REFERENCES

Section 2.3. The full set of reductions for single value node influence diagrams are

developed by Shachter in [S2].
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3.1 INTRODUCTION

The previous chapter developed the influence diagram theory necessary for
representing and exploiting the sums and products in the value function of a decision
problem. This theory is based on introducing subvalue nodes as a new influence
diagram concept. An algorithm may now be developed to solve problems formulated
within this framework. This will allow the user to formulate and analyze decision
processes as influence diagrams, exploiting both the advantages of the influence
diagram and the efficiencies made possible by separable value functions.

Prior to this thesis, algorithms have been developed for solving single value node
influence diagrams. At each step thesc algorithms select one node in the influence
diagram for removal, then remove it from the diagram by either expectation or

maximization over the value node, applying Bayes rule (arc reversal), summation of

one chance node into another or by a combination of these operations. There are
heuristics for selecting the best node to remove next. Techniques for determining the

E optimal ordering of node removals are currently being researched. It 1s guaranteed that
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there is always some node that is removable from the influence diagram. Thus, '

IR
,

because there are a finite number of nodes, it is guaranteed that the algorithm must
terminate after a finite number of steps and produce the solution.

The algorithm for solving subvalue node influence diagrams is very similar to these
algorithms. There are several differences though that need to be discussed before the
algorithm is presented.

First, there are several new operations in the subvalue node influence diagram.
Chance nodes and decision nodes can now be removed by expectation and
maximization respectively, away from the value node, into a member of the set of
subvalue nodes. Also, new subvalue nodes can be introduced into the influence
diagram in the course of the algorithm. The technique for selecting the node to remove
in each step must take advantage of these new operations.

Second, in the course of the algorithm all subvalue nodes except for the value node
must be removed. Should the removal of a subvalue node be considered along with the

removal of chance and decision nodes at each step of the algorithm? Or should they be
treated differently?

Third, in a subvalue node influence diagram containing sum nodes, there is the

possibility for removing the dependency of certain subvalue nodes on a chance node

- but not the dependency of other subvalue nodes on this chance node. Therefore, we

vy
.
s

2y have an expectation with respect to a chance node in which the chance node is not

" removed from the diagram. This was discussed in Section 2.3. This idea of removing

. arcs instead of nodes is not useful unless we have the ability to represent the influence

( diagram of a stationary decision process by an influence diagram representing a single

u

% stage of that process (this is discussed in Chapter 6 as a future research area).

-

» ) . 3 . .

r The purpose of this chapter is to develop an algorithm for solving subvalue node

r

’.. . . . . . .

Ce influence diagrams. The next section introduces several preliminary concepts
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necessary to understanding the development of the algorithm. The role of the subvalue
nodes in the algorithm is then discussed. It is then possible to present the algorithm
and to show that it always reduces a subvalue node influence diagram to the value
node, thus providing the optimal policy and maximum expected value of the decision

problem.

3.2 PRELIMINARIES

There are several rather specialized concepts that must be introduced in order to discuss
the development of the algorithm. Presenting these here will allow the ensuing
discussion to flow more smoothly. These concepts are: the cost of an influence

diagram reduction, subvalue node subtrees and immediate reverse dominators.

Cost of Reductions
Each chance node x has outcome space 2,. Each decision node d has alternative space
Q4. In this thesis Qy and 4 are always finite. We use |Qj] to denote the number of
outcomes or alternatives for node i.

Consider the removal of chance node x from the influence diagram in Fig. 3.1 by
expectation over the value node. Note that x is conditioned on z and y. The cost of

removing X is

=1 121 121+ [y |

where x denotes the cartesian product. This cost is a measure of the size of the
matrices required to remove x in a computer implementation of an influence diagram

solver. Itis also a rough indication of the number of operations required. We use the
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N terms "size" and "cost" of an operation interchangeably in this thesis. Remembering
N that C(x) denotes the conditioning variables for x (its direct predecessors) we have in
general r -
= N
. CostEx[VD) =ITi e x U C(x) U C(V) €2l o
OO
-}
v Figure 3.1. Influence diagram for cost of expectation example.
3 Now, consider applying Bayes rule to reverse the arc from x to y in Fig. 3.2. The
cost of this arc reversal is
Cost(Revx,y) =] Qx x Qy X Q3 X Qp X Q|
) =1 Ql * Q] * Q] * Q) + 124
More generally we have
Cost(Revy y) = [Miexu y U C(x) u C(y) 1Lil
:
2
.

Figure 3.2. Influence diagram for cost of applying Bayes rule example.
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The cost of the operation of performing maximization over a subvalue node with
respect to a decision variable d is calculated much like the cost of an expectation.
However, in this case all predecessors of V are aiso predecessors of d. Also, any
predecessors of d that are not predecessors of V can be ignored. Therefore, for the

general case we have
CostMg[VD) <1l e d U I(d) €2l

where I(d) denotes the direct predecessors of d. In the example in Fig. 3.3 the cost of

maximizing V over d would be ne A

CostMg1d)LV]) = 1Q4] * 1Qy] * Q]

Figure 3.3. Influence diagram for cost of maximization example.

Finally, if chance node x precedes chance node y and nothing else, x can be t: _
removed from the diagram by summing x out of the x,y joint probability distribution.
Refering back to Fig. 3.2 we could sum out x, removing it from the diagram. This

operation has the same cost as reversing the x,y arc. B
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As discussed in Section 2.2 it is required that the subvalue structure of an influence

L

ek ‘l.‘_' )
N

diagram be limited to a tree structure. Thus, sometimes we refer to the subvalue

P L]
H‘_l._ -

structure as the subvalue tree. A subvalue subtree is defined to be a subtree in the

subvalue tree consisting of a subvalue node and all of its subvalue node predecessors X A
(both direct and indirect). We refer to this subvalue subtree by its root node, that is the "'%
subvalue node which succeeds all other subvalue nodes in the subtree. Thus in Fig. \§
3.4 we have subtree(w) which consists of w, r and s. Also, the subvalue tree itself is a i-d;
subvalue subtree. We thus have subtree(V), consisting of V, u, w, s and r. ﬁ;
y x S
d I
s r

x

Figure 3.4. Influence diagram for subvalue subtree definition.

Immediate Reverse Dominator

The reverse dominator of a node x in an influence diagram is a node, r, such that r is

on every path from x to the value node. The immediate reverse dominator of x is the
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reverse dominator that precedes all other reverse dominators of x. In the example in

Uy
RO

P4
[/

'y

Fig 3.4, s and w are reverse dominators of d while s is d's immediate reverse

dominator.

.
v, T

.7
:

o
l'l
P

(I I
2l

?

3.3 SUBVALUE NODES AND THE ALGORITHM

Wi

The subvalue nodes play the role in solving influence diagrams of reducing the size of g 4
the solution operations. To reduce this size as much as possible, the subvalue nodes . 1
must be introduced into the diagram and removed at the appropriate step in the solution
process. In this section we briefly discuss when the subvalue nodes should be

introduced then discuss in some detail when they should be removed.

Introducing Subvalue Nodes

Automatic introduction of subvalue nodes was discussed in detail in Section 2.4.
There are two cases when subvalue nodes will be introduced into the diagram by the
algorithm, when removing subvalue nodes into a common successor and when parsing
the value function, that is subvalue structure genertion.

For the purposes of the algorithm, it is only important to note that a subvalue node
is introduced in the first case only in order to create a node that represents the sum or
product of two or more subvalue nodes. These two or more subvalue nodes are
always added or multiplied together immediately following the introduction of the new
subvalue node. Thus in this case, a subvalue node is never introduced except for the
purpose of removing two or more other subvalue nodes into it. For example consider
the MDP influence diagram in Fig. 2.14. Subvalue node v(2) is only introduced in

order to remove r(2) and v(3). Thus, except for subvalue structure generation, any
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subvalue introduction results in a net effect of at least one node being from the oA

diagram.

The other point in the algorithm in which subvalue nodes are introduced by the
algorithm is in subvalue structure generation. This is performed as a preprocessing
step of the algorithm. Its purpose is to parse the value function and build a subvalue
tree if possible based on this parsing. For the purposes of the algorithm we only need
to be sure that no more than a finite number of subvalue nodes are introduced during
this preprocessing.

Under what circumstances does subvalue structure generation introduce a new
subvalue node into the diagram? First, a subvalue node might be found in the diagram
which is not a sum or product node but represents a deterministic function that is a sum

or a product. The subvalue structure generation program will change such a subvalue

node to a sum or product node as appropriate and introduce new subvalue nodes so that
all direct predecessors of the new sum or product node are subvalue nodes. Each of
these predecessors represent an argument to the sum or product node. Second, if a
sum or product node is found in the diagram such that all of its predecessors are not
subvalue nodes, subvalue structure generation will introduce new subvalue nodes to
make sure this is true. Section 2.4 discusses these operations in more detail. We can
see that subvalue structure generation only introduces a new subvalue node into the
diagram when it finds an argument to a sum or product node that is not a subvalue

node. Therefore, as long as the value function has a finite number of sums and

products each with a finite number of arguments and contains no recursion, then we are :T_'_-Zj;
guaranteed that subvalue structure generation introduces only a finite number of o
subvalue nodes. We assume that these conditions on the value function are always L‘?
satisfied. o X
e
E. 3
Ty
L
A
.y
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Rules for Removing Subvalue Nodes

At

Eventually all nodes, including subvalue nodes (except the value node), must be

removed from the influence diagram in order to obtain the solution. However, we

.

would like to keep subvalue nodes in the diagram as long as possible to reduce the cost

of removing the chance and decision nodes. It is important to consider at what point

e,

the subvalue nodes should be removed. A complete solution to this problem would
have to incorporate the current research on finding the optimal ordering of node
removals. This is beyond the scope of this thesis. In this research we remove
o subvalue nodes only in order to make a necessary chance node removal or if they

sat’ ‘v one of the heuristics discussed below.

Consider the influence diagram in Fig. 3.5. Note that the predecessor of subvalue

node w is a subset of the predecessor set of subvalue node u; that is, C(w) is contained
- in C(u). This suggests that no operation on the influence diagram can possibly be of

larger size if u and w are removed. For example, consider removing z into u. The size
- of this operation is |Q; X QC(z) X QC(u) |- Now, say u and w are removed into V
first. To remove z into V now costs [Q X QC(z) X Qc(v) |- But, because C(w) is
contained in C(u), C(V) = C(w) U C(u) = C(u). So the size of the operation of

removing z into V (after removing u and w) cannot be greater than removing z into u.

Vo e e s e e -
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Figure 3.5. Subvalue nodes u and w should be summed per the subset
rule.

From the above reasoning for z, the cost of removing y into V (after removing u
and w) cannot be greater than removing y into u. And indeed, if y is removed into u, it
must also be removed into w. Thus, as for removing y, it is cerainly better to remove u
and w first.

Therefore, we see that removing u and w before z and y cannot increase the cost of
removing zand y. Also, not removing u and w first might increase this cost because
predecessors of both u and w will have to be removed into both.

Thus, when the subset condition holds on the predecessor sets of two subvalue
nodes which have a common successor, we should remove the relevant subvalue
nodes. This prevents duplication of operations and never increases the cost of any

operations. We formalize this in the following rule.

Rule 1 (Subset Rule). If two subvalue nodes r{ and rp have the same successor,
a sum or product node r, and C(r1) is contained in C(r3), then rq and rj should be
removed into r. If r has successors other than r] and rp then a subvalue node r'

should be introduced as a predecessor of r and rjand r2 removed intor'.
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- A special case to which the subset rule applies is when all chance and decision
nodes have been removed from the influence diagram such that only subvalue nodes
remain. In this case there will be sets of subvalue no.cs which have the same
successor and nil predecessors. These satisfy the subset rule and should be reduced
into their respective Successors.

There is another case in which a set of subvalue nodes should be removed.
Consider decision node d and subtree(r) of subvalue nodes such that if subtree(r) were
reduced into r then decision node d would be removable by Theorem 2 in Section 2.3.
The fact that d is removable after subtree(r) is reduced implies that every chance and
decision node in C(subtree(r)) is also in I(d). Therefore, no node can be reduced into
subtree(r) until d is removed. But d cannot be removed until subtree(r) is reduced. We

summarize this in the following rule.

Rule 2 (Removable Decision). If decision node d and subtree(r) are such that
reducing subtree(r) into r makes d removable per Theorem 2 in Section 2.3, then

subtree(r) should be reduced into r.

In addition to the above two cases, sometimes a set of subvalue nodes must be

removed to allow a chance node to be removed. For example take an MDP with a
multiplicative objective as in Fig. 3.6. Node v(3) represents the salvage value. Chance
node x(3) must be removed next. It is necessary to first multiply together v(3) and r(2) j
per the rule on chance node removal in Section 2.3. The operation of removing x(3) u
consists of introducing node v(2) =r(2) * v(3) , removing r(2) and v(3) into v(2) and .

finally removing x(3) into v(2).
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x(0) x(1) x(2) x(3)

d(0) d(1) d(2)

r(0) r(1) r(2) v(3)

< X

Figure 3.6. Subvalue nodes r(2) and v(3) must be multiplied before
expectation with respect to x(3).

There are other cases when subvalue nodes should be removed that do not fall into
either of the above categories. These cases have not been thoroughly investigated. A
simple example is given though in Fig. 3.7. In Fig. 3.7a it is more efficient to solve
the problem by removing r and s before x even though it is not necessary and the
subset rule does not apply. However, if the influence diagram is modified slightly to

that in Fig. 3.7b, it is more efficient to remove x before removing r and s.

68




R AR S i BRSO R RC IR CR et S M R SR A A I N AT 4 A e 000 O Vil -4 W B Ao M i R e ol )

(a) (b)

Figure 3.7. Example showing conditions of the subset rule are not
necessary.

In summary, we have seen that subvalue nodes should be removed if they satisfy

the conditions in the subset rule or in the removable decision rule. They must be

removed to be able to remove certain chance nodes. Finally, we saw that there are
certain cases when neither of the above hold, but the subvalue nodes should be
removed anyway. The next subsection goes into detail on removing subvalue nodes as

part of the operation of removing chance and decision nodes.

Subvalue Nodes and Removal of Chance and Decision Nodes

We know that when the conditions for the subset rule or the removable decision rule
are satisfied the relevant subvalue nodes should be removed. These conditions will be
checked in each step of the algorithm. The example of Fig. 3.7 illustrated that there
are other times when it is profitable to remove subvalue nodes when the two rules do
not apply and it is not necessary to remove some chance node. A complete answer to
the problem of when to remove subvalue nodes will need to incorporate the work on

optimal ordering of node removals. This will hopefully provide an algorithm that
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produces the optimal ordering for removing all nodes in the subvalue node influence
diagram, including chance, decision and subvalue nodes. In this thesis, subvalue
nodes are only removed if one of the two rules above apply or if they must be removed
in order to remove a specific chance node. No attempt is made to determine the optimal
solution process.

Thus, in the course of the algorithm at each step the subvalue tree is examined for
any subvalue nodes that satisfy the subset rule. If not, the influence diagram is
examined for any removable decision nodes. If there are no removable decision nodes,
all chance nodes in the influence diagram are examined and one is selected to be
removed next. Some chance nodes will not be removable until certain decision nodes
are removed. These are immediately eliminated as alternatives for removal in the
present step. Other chance nodes will be removable if certain subvalue nodes are

removed first. These are considered as alternatives for removal. The relevant chance

_ node and the corresponding subvalue nodes are removed as one operation. Removing

certain chance nodes might involve removing a large part of the subvalue tree. This
could significantly increase the cost of future removals. Such indirect costs must be
considered by whatever technique is used in the algorithm to select the next node to
remove.

Because we are now considering the removal of a chance or decision node and a
corresponding set of subvalue nodes as one operation, it is helpful to develop more
general conditions for removing chance and decision nodes. First, it is necessary to

present the following lemma.

Lemma. If x is a chance node in an influence diagram and its successor set contains
only chance nodes or subvalue nodes, then the arcs from x to its chance node

successors can all be reversed.
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Proof. An arc between two chance nodes can always be reversed if there is no alternate \3
D
path between the two. There are no cycles in influence diagrams. Also, all successors ......3
of a subvalue node are other subvalue nodes. Therefore, there must be some chance J -?

node y in the successor set of x such that there is no path from another node in the set

toy. This being true, there can be no path from a successor of x to y, and so there is
no alternative path from x to y. Therefore the arc from x to y can be reversed. The
result is another influence diagram that satisfies the conditions in the lemma so if x still
has successors, an arc from x to one of these successors can be reversed. This
continues until x has no successors but subvalue nodes/

We are now ready to give conditions for the removal of a chance node from an

influence diagram with subvalue nodes.

Theorem 1 (Chance Node Removal). If x is a chance node in an influence
diagram with no decision successors then x can be removed from the diagram by a

combination of arc reversals, removal of subvalue nodes, and expectations.

Proof. Since x has no decision node successors, it has only chance and subvalue node

successors. The arcs to the chance node successors of x can all be reversed by the

preceding lemma. The node x will then only have subvalue node successors, the set R

={rg, ry, ra,...}. If the path from each r; in R to the value node contains no
blocking product node with respect to x and rj , then x can be removed from the
diagram by sequentially taking expectation of each rj over x by Theorem 1 in Section
2.3. For each blocking product node b,the b subvalue subtree can be reduced into b.
It might be desirable to introduce new subvalue nodes in the course of this reduction.

The only successors of node x will then be a set of subvalue nodes
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s
§ R' = {r'g, r'y, . . .} such that the path from each r'; in R’ to the value node contains no
';"- blocking product nodes. Node x can then be removed by sequentially taking
< expectation of each r'j with respect to x by Theorem 1 of Section 2.3.1 I-—-\
There is a corresponding rule for decision nodes. Remember that if s is a subvalue ;.i
node, C(subtree (s)) is the set of all chance and decision nodes that directly precede a :xs
- subvalue node in the subvalue subtree defined by s. E"'
: Theorem 2 (Decison Node Removal). If d is a decision node in an influence '
diagram such that l_
a) each successor of d is a subvalue node
b) the immediate reverse dominator of d, subvalue node s, is such that
| C(subtree(s)) \ d is a subset of I(d)
then d can be removed from the diagram by first removing the s subvalue subtree
and then maximizing s over d.
Proof. The s subvalue subtree can be reduced into s. After this reduction all E-
' conditions for Theorem 2 in Section 2.3 are satisfied and d can be removed into s by
. maximization of s over d.® -
{;‘_ 3.4 THE ALGORITHM S
The algorithm is now presented. This will be followed by a discussion of why it is S
E guaranteed that the algorithm always reduces a subvalue node influence diagram to the .
value node producing the optimal policy and maximum expected value for the problem. -
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DEFINE PROCEDURE EVALUATE_SVID

BEGIN 8
check for legal subvalue node influence diagram !:F'i
add implicit arcs E:;gf
subvalue structure generation il-:ﬁ

WHILE C(V)#9 DO [_._)‘
BEcy =
S IF subset rule holds for any set of subvalue nodes R h_aj
2 THEN remove set R (possibly adding a partial sum or product ?f -

subvalue node)

ELSE IF there is a removable decision
THEN remove the decision node and the corresponding subvalue subtree
if necessary (possibly adding a partial sum or product subvalue node)
ELSE BEGIN
choose chance node to remove

remove that chance node

END
END
END

In the course of the algorithm barren nodes (nodes which have no successors)

might be created after a decision node is removed. It is important that these be deleted

from the diagram after each step if any were created. Now, we have showed
previously that subvalue structure generation adds only a finite number of nodes to the [-4?
influence diagram. Thus, we begin the iterative part of the algorithm with an influence

diagram that has only a finite number of nodes. Also, remember that any time a
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subvalue node is introduced in the iterative part of the algorithm, it is only for the :::‘.li:
e
purpose of removing at least two other subvalue nodes in the same step. Thus the o

algorithm is guaranteed to reduce the subvalue node influence diagram to the value
node and thus provide the solution if there is always at least one removable node at

each step.

v

Consider first the case in which all chance and decision nodes have been removed

from the diagram. The influence diagram contains only subvalue nodes. These must

‘
l¢ e e h .-
AL
PRV A '
I SR ;_L__

be in a tree structure. Because there are a finite number of nodes, there must exist a

- Yo

subvalue node in this structure whose predecessor subvalue nodes have no

N

WPOPOFAERENT A N

predecessors. This set of predecessors is removable.

.l'_'l' [

If there are chance or decision nodes in the diagram, then the following theorem

« v
P
* L ]

.
PRSCRS RN I
L add

guarantees that at least one of them is removable.

Theorem (Existence of a Node to Remove). In a subvalue node influence

diagram there is always a removable node until only a single value node remains.

Proof. If there are no chance or decision nodes in the diagram, then it contains only
subvalue nodes and the above argument holds. If there is no decision node in the
diagram, then there must be a chance node which has only subvalue nodes and other
chance nodes for successors. This chance node can be removed by Theorem 1 in
Section 3.3. Suppose there is at least one decision node in the diagram. Then there
must be a decision node d in the diagram that succeeds all other decision nodes. If d is
removable then the proof is complete. If d is not removable, then there must be a
chance node x that either is a successor to d or is not in I(d) but is an element of
C(subtree(s)) where s is the immediate reverse dominator of d. In either of these cases,

x is not in I(d). It thus cannot precede any decision node or it would be in I(d) because
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of "no forgetting". The chance node can thus be removed by Theorem 1 in Section

3.3..

Thus the algorithm always removes all of the nodes from the influence diagram but tEﬁ:
for the value node and so always produces the optimal policy and maximum expected 1%::
value. *_:J‘

NOTES AND REFERENCES

Section 3.1. The first algorithm for solving influence diagrams with a single value

node is contained in [S2]. The work on optimal ordering of node removals in

evaluating influence diagrams is in [E1].
Section 3.3. The fact that all the arcs from some chance node to a set of chance

nodes can be reversed is established in [S2].
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Chapter 4

Coalescence and the
Principle of Optimality

This chapter begins by discussing the concept of coalescence in both trees and
influence diagrams. Then it is noted that the principle of optimality is actually a special
form of coalescence. The remainder of the chapter discusses the relationship between

the principle of optimality and the influence diagram with subvalue nodes.

4.1 COALESCENCE AND INFLUENCE DIAGRAMS

Coalescence is the operation of reducing the size of a decision tree by recognizing
certain nodes in the tree as identical. Therefore, the values for these nodes (calculated
by rolling back the tree to the node) need only be calculated once instead of many
times. This reduction in the size of the tree is valid under certain conditions involving
conditional independence among the variables in the model, the separability of the value
function or both. This is a commonly applied technique for reducing the size of a
decision tree to manageable proportions. A well documented example is the Voyager
Mars decision analysis described in Section 5.5. In this example the application of
coalescence reduced the number of branches in the decision tree by an order of

magnitude.
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Coalescing the tree based on conditional independence is referred to as T
N
nonseparable coalescence. Coalescing the tree based on separability of the value f.'j.-f;
function is referred to as separable coalescence. Remember that separable in the ‘!;:
context of this thesis is used to mean additive or multiplicative. :"-:::‘-f
S
NG,
The influence diagram, without the enhancements developed in this thesis, is a very L
natural and effective way to represent and exploit the conditional independence in a _‘s_ﬁ.s
decision model. It achieves all the efficiency that would be provided by modeling the ::j'
problem as a tree and applying nonseparable coalescence. An example will help to ;::.': -
-l
illustrate this. ! S
- N
[ X y z R
v{y.z) P
v{y.z) f;:_'::{
v(y.2) PN
v(y.z) o
Figure 4.1. Example of nonseparable coalescence. 3;:;1_, ]
- Note the probability tree in Fig. 4.1. The key characteristic of this problem is that z i
and v are conditionally independent of x. Thus, the value of x can be ignored in :Zf‘:fl

removing the variable z from the tree by expectation. This is represented in the tree by
having only one z subtree for each value of y and not one for each value of the vector
(x,y). The z subtree need only be calculated twice instead of four times. This same o

problem is represented in influence diagrams as in Fig.4.2. R
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‘ The influence diagram makes it clear that z and v are both conditionally independent :
:Z of x and that expectation of v with respect to z can be performed while ignoring the 4
value of x. The influence diagram not only allows exploitation of the conditional Fj‘
L .:.‘l:..1
g independence in the model (at least as well as it could be exploited by nonseparable L
Zj'-‘ coalescence in the tree) but it also provides all of the other advantages of the influence
, diagram.
i
» The influence diagram with subvalue nodes as developed in this thesis was
., ' designed to exploit the separable nature of the value function of decision problems. It
- can achieve all of the efficiency provided by modeling the problem as a tree and
> applying separable coalescence. The decision problem modeled by the tree in Fig. 4.3
- and the influence diagram in Fig. 4.4 provides an example.
* " rx) “ stya)
- ey 5.2 V(X,y,Z)=q+r+s
- vix,y,2) =q+r+s
_l V(X,y.2)=q+r+s
= stz v(x,y,2) =q+r+s
5
\ Figure 4.3. Example of separable coalescence.
N
X
o
N
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The key characteristic of the problem is that z and s are conditionally independent
of x and s enters into the value function as an addend. This allows z to be removed by
expectation while ignoring both the variable x and the q and r terms of the value
function. The resulting values (one for each y) must be added to r(x,y) before y is
removed. In the tree, this is rather hard to see. Itis very naturally represented,

however, in the influence diagram.
DanaOnns©

O

Figure 4.4. Example of Fig. 4.3 as an influence diagram.

It is clear in the influence diagram that z can be removed considering only y and s.
We then note that the predecessor set of q is a subset of the predecessor set of r and the
predecessor set of s is also a subset of the predecessor set of r. Thus nothing is lost at
this point by removing q, r and s into v before removing x and y. This is an instance
of the subset rule.

For larger problems or problems in which the the value function is both additive
and multiplicative, it becomes a nontrivial engineering challenge to identify and
represent all nonseparable and separable coalescence in the tree so that it can be

exploited in solving the model. On the other hand, in the influence diagram, the

modeler need only: 1) represent the conditional independence among the random

variables in the model by placing no arcs between the appropriate nodes and
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2) properly represent the relevant sums and products in the value function. In solving
the resulting influence diagram it is possible to obtain all the efficiency that would result
from modeling the problem as a tree and applying nonseparable and separable

coalescence.

Asymmetry

_Besides coalescence there is another common charactericstic of decision problems that
allows a significant decrease in the size of the decision tree model and in the number of
calculations necessary to solve it. This characteristic is asymmetry. Just how dramatic
the savings in size and computational effort can be due to asymmetry is illustrated in the

Voyager Mars application in Section 5.5. A simpler asymmetric problem is illustrated

Figure 4.5. Tree for an asymmetric decision problem.

in Fig 4.5.
X y z
v(x,y,z)
v(x,y.Z)
v(x,y,Z)
'_.-; V(X.y,Z)
E v{x)

[

i- The key characteristic of this problem is that for certain values of x, v does not
s depend on y or z. Itis common in this case to remove the y subtree for the rclevant
e

. branch of x from the tree.
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- At present the influence diagram cannot explicitly represent nor exploit asymmetry :3.&: ;
o "
3 in a decision problem. The Voyager Mars application shows that the computational ..

complexity of solving a decision problem can be significantly increased because of this
shortcoming,.

We thus have the following conclusions on coalescence, asymmetry and influence
diagrams.

» Influence diagrams are a powerful tool for a simple and full exploitation of the
conditional independence and value function separability in a decision model. Any
efficiency from either of these two gained by applying coalescence to a decision tree
can be obtained by the influence diagram with much less work on the part of the user.

» Coalescence is built on conditional independence and separable value functions.
These aspects of a problem are represented explicitly in the influence diagram. Thus
insight into the coalescence concept can be gained by representing it in influence
diagrams.

« The influence diagram gives the analyst more flexibility in solving these
problems than trees.

» Asymmetry, though like coalescence a very important factor in decreasing the
computational complexity of solving a decisin problem, cannot be represented nor

exploited within influence diagrams.

4.2 THE PRINCIPLE OF OPTIMALITY IN INFLUENCE
DIAGRAMS

In light of this discussion on coalescence, let us consider a Markov decision process

(MDP). Fig. 4.6 illustrates an influence diagram representation of a three stage MDP.




.....................

- O .- -

- \-:\-.

W S
s VNS,

x(0) x(1) x(2) x(3)

< :~t
- d(0) d(1) d(2) i
% o

r(0) r(1) 1(2) r(3)

B +
» v !.L!:
- Figure 4.6. Three stage MDP.
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Figure 4.7. Equivalent tree for the influence diagram in Fig. 4.6. Ii'_‘-ltj
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This is an example of the issues discussed in the previous section. Indeed, it is
equivalent to solve the MDP by either solving the influence diagram in Fig. 4.6,
solving the tree in Fig. 4.7 or by using dynamic programming. The MDP has a
special structure that allows it to be solved very efficiently by the influence diagram
with subvalue nodes or by applying coalescence in trees. There are two aspects of this
special structure. First, the value function is separable. In this specific example it is a
sum. Little would change if it were a product. Secondly, the dependency and
information structure of the problem satisfies the Markov property; that is, given the
current state, the future evolution of the process is independent of the past. Also, the
current state of the process is observable, it is known to the decision maker when the
current decision must be made. This special structure of the MDP guarantees us that
the optimal policy of the process will have a very special property. This property is the
principle of optimality. This principle, credited to Richard Bellman, is an important
concept in decision theory and is the theoretical basis of dynamic programming. From

(B1] we have the following statement of the principle.

Principle of Optimality. "An optimal policy has the property that whatever the
initial state and initial decision are, the remaining decisions must constitute an

optimal policy with regard to the state resulting from the first decision.”

The influence diagram offers a nice illustration of this principle. Consider solving
two MDPs (designate them (a) and (b)) as influence diagrams. The only difference in
the two is that (b) is missing the first stage of (a). We call (b) the truncated process.

Fig. 4.8 depicis the steps in the solution procedure of the two problems in parallel.

83

L PR P PR P P PO, N . N PR T T PP DUr S W PP W IO NPT W W P e




..................

C S D A L e e L Nl e e T T T L L b

LTt L
et LT
L N A .

e b at e o Natas o e

84

PR P WP A WY PR A SN

a)

(

Figure 4.8. Solution steps for an MDP and its truncated version.
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Figure 4.8(cont.). Solution steps for an MDP and its truncated version. -
4
The shaded nodes indicate the nodes that are involved in each operation. :3
:.1
Considering the nodes involved in each step, it is clear that the optimal policy of the t§
.
truncated process will be equal to the last N-1 decisions of the optimal policy of the full ‘g
decision process. Itis also clear that decision process (b) could have been truncated “
N
b
{
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just before any stage k instead of stage 1 and the optimal policy of the truncated process
would be equal to the last N-k decisions of the optimal policy of the full decision
process. When this equality holds, we say that the optimal policy of the truncated

process is consistent with the optimal policy of the full process.

An Influence Diagram Condition for the Principle of Optimality

Consider again the conditions on the value function and the dependency and
information structure that were true of the MDP so that it satisfied the principle of
optimality. Specifically, the value function must be separable (either a sum or a
product). The current state must be observable and contain a sufficient summary of the

history of the process such that the future evolution of the process is independent of

that history given the current state. Equivalently, in the language of influence
diagrams, the value node must be a sum or product node with the stage rewards as

E predecessors . The node representing the current state must be a direct predecessor of
the current stage decision and this node must be on every directed path from its

predecessors to its successors (except the value node).

Now, the influence diagram provides the capability to solve more complex
decision processes than the standard MDP. It would be helpful to have a condition on
the influence diagrams of these more complex decision processes to ensure that the
principle of optimality applies. This will provide important information on the
practicality of solving the decision process. We have the following proposition.

In it the value of each variable in X(k) collectively define the state of the decision
process. It is assumed that each stage has only one decision variable, and so there is a
one to one relationship between stages and decisions. It is assumed that all forgettable

arcs have been removed from the diagram (forgettable arcs are defined in a note
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-, following Theorem 2 in Section 2.3). Figs. 4.9 and 4.10 accompany the proposition e

and its proof. Eﬁ

Proposition (Principle of Optimality). If for the influence diagrams with stage 55&

decision variables d(0), d(1), . . . , d(N), there exists the set of nodes X(k) =
{x1(k), x2(k), . . .} associated with each decision d(k) such that
a) all nodes in X(k) are informational predecessors of d(k)
b) the value node is a sum or product node
c) atleast one element of X(k) is on every directed path from the predecessors
of X(k) to the successors of X(k) (with the exception of the value
node),

then the optimal policy for the decision process, {d*(0), d*(1), ..., d*(N)}, will

have the property that policy {d*(k), d*(k+1), ..., d*(N)} is optimal for the
decision process defined by the original decision process with all nodes, except

X(k) and its successors (direct or indirect), deleted. E

Proof. Solve for the optimal policy of the original decision process by first introducing

a subvalue node r (of the same type as the value node, that is sum or product) as a

predecessor of the value node such that all directed paths from X(k) to the value node
go through r and all directed paths from the predecessors of X(k) that do not go
through X(k) do not go through r either. A possible next step in finding the optimal
policy is to remove all chance and decision node successors to X(k). Now, each
chance, decision or subvalue node successor of X(k) (except the value node) can have
only X(k) and its successors as conditioning predecessors by condition (c). Now, no

predecessors of the value node besides r lie on a directed path from a successor of X(k)

to the value node because of the way r was introduced. Therefore, applying any

expectation or maximization operator to the sct V of all subvalue nodes of the decision
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process is equivalent to applying the expectation or maximization operator to subtree(r).

Therefore, removing all chance and decision node successors to X(k) and thus finding
the last N-k decisions of the optimal policy for the full decision process does not
involve any nodes except X(k) and its successors without the value node. Therefore,
these steps are exactly equivalent to finding the optimal policy of the decision process
defined by removing all nodes from the oniginal decision process except X(k) and its

successors.d

x(0) x(1) x(2) x{3)

d(0) d(1) d(2)

CHo)D r(1) r(2) r3)

< +

Figure 4.9. The unshaded part of the MDP corresponds to a decision
process formed by deleting all nodes except X(1) and it successors.

88

...........

e PR
f P et e
& Tl et




I.I.l.

x(0) x(1) %(2) x(3)

d(0) d(t) d(2)

r(0) (1) r(2) r(3)

<+

Figure 4.10. An MDP with subvalue node r introduced as in the proof of
the proposition.

Some examples will serve to illustrate the meaning and usefulness of this
proposition. First consider the MDP again of Fig. 4.6. Note that the usual state
variable serves as the set X(k) of the proposition and so, as we know, the MDP
satisfies the conditions for the principle of optimality.

As mentioned earlier the subvalue node influence diagram provides the ability to
solve decision processs that vary from the strict MDP sturcture. The decision model
resulting from NASA's Voyager Mars project is such a case. The influence diagram
for a pilot model from that application is shown in Fig. 4.11. Though its structure
varies significantly from the MDP, the influence diagram can be readily solved. Note
that for decision s(k) nodes m(k-2) and s(k-1) scrve as the set X(k) and thus the

principle of optimality applics.
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s(0) s(1)] s(2) s(3)
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v(0) @ @ c(2) v(2) c(3) v(3)

Figure 4.11. Pilot model for NASA's Voyager Mars project.

A very interesting decision process is the partially observable Markov decision
process (POMDP). In this variation of the MDP the state variable at each stage is
unobservable. The decision maker only observes the outcome of an observation

variable. The influence diagram for one formulation of the POMDP is in Fig. 4.12.
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v
r(0) r(1) r(2)
&

Figure 4.12. Partially observable Markov decision process.

One can see from the influence diagram that there is no set of nodes associated with
each stage to serve as the set X(k) of the proposition. Thus the principle of optimality
does not apply to this formulation of the POMDP. Indeed the work required to solve it
grows exponentially with the number of stages. For more than a few stages it is
usually impractical to solve this formulation of the POMDP.

If the model is reformulated with the new state variable being the decision maker's
probuability distribution on the current state instead of the current state itself,then the
influence diagram in Fig. 4.13 results. Note that the state variable n(k) representing
the probability distribution on the current state now serves as the set X(k) of the
propostion and so the principle of optimality holds. The subtleties of this problem are

discussed in more detail in Section 5.3.
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Figure 4.13. Reformulated partially observable Markov decision process.

Importantly, this example shows us that whether or not the principle of optimality

applies depends on the formulation of the problem and not the problem itself.

Usefuiness of Subvalue Nodes and the Principle of Optimality

The principle of optimality is an important concept in solving influence diagrams. If an
) influence diagram of a decision process satisfies the principle of optimality then the
subvalue nodes are very useful and significantly reduce the work required to solve the

problem. If, however, the principle of optimality is not satisfied, the subvalue nodes

) provide little if any benefit. For many decision processes the fact that the principle of
optimality is not satisficd means that the decision process as formulatedwill be
impractical to solve. Reformulation of the problem to one that satisfies the principle of
'
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optimality might be necessary. This relevance of the principle of optimality for solving

influence diagrams is illustrated by the two decision processes in Fig. 4.14.

b(0)

x(0)

d(0)

r(0)

(@)

..............
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.‘ Figure 4.14. Two similar decision processes with large differences in -
- computational complexity.

Note the strong similarity between the two processes. The only difference is in the

.I .\ ..
o

... vl' .

shaded arcs. Note that for the process in (a) the x(k) node serves as the set X(k) and

so the principle of optimality holds. However, for the process in (b) there is no set of

nodes to serve as X(k). Therefore the principle of optimality does not hold for the
decision process in (b).

The first several steps of the solution process for each problem is shown Fig. 4.15

M'- o - ‘.‘.‘

to illustrate the problems that are encountered when trying to solve a decision process
that does not satisfy the principle of optimality. In order to solve either decision

process, decision node d(2) must be removed before the other decisions. However,

g betore removing d(2), x(3) and b(2) must be removed. Removing x(3) is easy in both
cases. Removing b(2) in (a) is likewise a simple operation. However, to remove b(2)
'g in (b) requires reversing the arc from b(2) to x(2). This results in b(1) becoming a
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X predecessor of b(2). Therefore, when b(2) is removed into r(2), b(1) becomes a

, predecessor of r(2) and so must also be removed before decision d(2) can be made. In
! removing b(1), b(0) becomes a predecessor of r(2). Thus all the b(k)'s must be

removed before decision d(2) can be removed. In the process of removing the b(k)'s,

. r -
PR
P R

r(2) becomes a successor of every chance and decision node in the problem. At that

point the subset rule informs us that it is better to remove all the subvalue nodes into the

e 4

value node resulting in a single value node influence diagram. Thus, the subvalue
nodes are not useful in solving this decision process. The work required to solve (b)

will grow exponentially with the number of stages.

Therefore, we can see that in formulating a decision process it is important for the

analyst to strive for a formulation that satisfies the principle of optimality. The

influence diagram is an effective tool for assisting the analyst in finding such a

formulation.
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(a) Node x(3) removed into r(3) by expectation
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Figure 4.15. First few solution steps for the decision processes in Fig.
4.13.
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(b) Nodes r(2) and r(3) summed

¥

(c) Attempt to remove b(2)

Conclusions ]

Subvalue nodes allow the principle of optimality to be exploited in solving decision
processes formulated as intluence diagrams. We have in fact shown that the subvalue
node concept is not very usctul for problems to which the principle of optimality docs

not apply.
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A condition in terms of the influence diagram has been developed that ensures us
that a specific influence diagram formulation of a decision process satisfies the principle
of optimality. We have also seen that whether or not the principle of optimality holds
depends on the formulation of the decision problem and not the problem itself. Thus
the influence diagram promises to be useful in formulating decision processes as a tool
to guide the analyst toward a formulation for which the principle of optimality holds.

If a decision problem cannot be formulated in such a way that the principle of
optimality holds, then it can still be solved as an influence diagram. The algorithm will
exploit the separability of the value function as much as possible. The difficulty in
solving the decision process will depend on how close it is to satisfying the principle of
optimality.

Also, because the algorithm exploits the separability of the value function without
assistance from the user the algorithm automatically exploits the principle of optimality
if possible in solving decision processes. Thus the user need only input a decision
process as a single value node influence diagram with an algebraic representation of the
value function. The preprocéssor of the algorithm generates a subvalue structure by
parsing the value function and the algorithm solves the resulting problem. If the
problem satisfies the principle of optimality the steps taken by the algorithm to solve the

decision process will correspond to dynamic programming,

NOTES AND REFERENCES

Section 4.1. Coalescence in decision problems is discussed in detail by Olmsted in

[O1]. The examples in Figs. 4.1, 4.3 and 4.5 are also in [O1]

Section 4.2. The statement of the principle of optimality is due to Bellman [B1].

e
DA

% r
Y

W

[ L

)
e '.a‘

-
'
»

WAL | S
I RO
LN )

56

'.r~r
v A
I AN ARRR)

(R EY
/ s .l

“» Tt eca e mmm e sy
KR |

(AN
o Iy ] [
RAARAD




Chapter 5

Applications

& The influence diagram with subvalue nodes has been applied to several sample
problems. A few of those applications are presented here to illustrate the strengths and

weaknesses of the theory developed in this thesis.

The first three examples illustrate the use of the subvalue node influence diagram
and the associated algorithm to formulate and solve Markov decision processes
(MDPs). The first example is the standard MDP, the second is a risk sensitive MDP in
which the utility function is exponential and the third is an MDP with random rewards.

Several of the most common deviations from the standard Markov decision process
can be solved directly on the subvalue node influence diagram without using the state
augmentation technique. A Markov decision process with time lag is used as an
example to illustrate this.

The state of the art algorithm for the partially observable Markov decision process
(POMDP) requires the POMDP model to be reformulated. Though the influence
diagram cannot be used to solve the POMDP, it lends insight into this required

reformulation.
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The inventory problem with correlated demands and forecasts on future demands
could be solved by treating it as a Markov decision process with an augmented state
variable. Solving the problem directly with the subvalue node influence diagram
significantly decreases the data storage requirements and computational complexity.

Finally, the decision model of an actual decision analysis is formulated as an
influence diagram. This example shows both the strength of the influence diagram in
capturing the separable nature of a value function and its weakness in capturing
asymmetry.

In solving these applications the algorithm is performing operations analogous to
dynamic programming. The user, however, need only represent in the model the
relevant sums and products in the value function. The user need not set up the
recursive equations of dynamic programming or know anything about dynamic

programming.

5.1 MARKOV DECISION PROCESSES

The algorithm developed in Chapter 3 can be applied to solving Markov decision
processes (MDPs). The standard MDP with an additive value function can be solved
as well as the risk sensitive MDP in which the utility fuction is exponential and the

MDP with random rewards.

Standard Markov Decision Process

The graph of the influence diagram of a four stage MDP is shown in Fig. 5.1a.

Remember that the influence diagram contains both a graph and a data frame. The data

frame of the MDP influence diagram is in Fig. 5.1b. There is one subframe for each
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> node. The computer implementation of the algorithm in this thesis uses the data frame ’:—:".E
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"'_ of the influence diagram as its data structure. E'L-i
. . . . AL
The first few steps of the algorithm are depicted in Fig. 5.2a through 5.2e. Note -‘,-:-“,.:

o

Ay

that in the first step the preprocessor of the algorithm recognizes that because the value : -j;i
AN
sty

node is a sum node, the deterministic rewards r(0) through r(4) can be treated as

T
N R

expectation nodes, that is subvalue nodes.

W MRS

The MDP is one of the simplest cases of subvalue node influence diagrams.

Because it is so highly structured there is only one chance or decision node that is

e e e e
g et el
) T N At
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removable at each step. The node removals performed by the algorithm correspond

2

Okt
2]

D]

e Y5t
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exactly to the dynamic programming operations for solving an MDP as was discussed

.
‘et

.
(g
2

in Section 2.1. .'_.!4

x(0) x(1) x(2) x(3) x(4)

d(0) d(1) d(2

—-—

d(3)

v v
r(0) @ @ "3)

Figure 5.1a. Graph of the influence diagram for an additive MDP.
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;(mdp-add5 (x0 (kind chance)

(outcomes1 234 5)
(probs array #58011892)
(preds)

(succs x1 dO r0)
(dim$5))

(dO (kind decision)

(altsabcde)
(preds x0)
(succs x1 r0)

(dim5))

(r0 (kind det)

(vals array #580118A2)
(preds d0 x0)
(succs v))

(x1 (kind chance)
(outcomes 1 2 3 4 5)
(probs array #58011882)
(preds dO x0)

(succs x2dlrl)
(dim 5))

(d1 (kind decision)

(altsabcde)
(preds x1)
(succs x2rl)

(dim 5))

(r1 (kind det)

(vals array #580118A2)
(preds d1 x1)
(succs v))

(x2 (kind chance)
(outcomes 1 2 3 4 5)
(probs array #58011882)
(preds d1 x1)

(succs x3 d2 r2)
(dim5))

(d2 (kind decision)

(atsabcde)
(preds x2)
(succs x3 r2)

(dim5))

(r2 (kind det)

(vals array #580118A2)
(preds d2 x2)
(succs v))

(x3 (kind chance)
(outcomes 1 2 3 4 3)
(probs array #58011882)
(preds d2 x2)

(succs x4 d3r3)
(dim$5))
(d3 (kind dccision)
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(altsabcde)
(preds x3)
(succs x4 r3)
(dim 5))

(r3 (kind det)

(vals array #580118A2)
(preds d3 x3)
(succs v))

(x4 (kind chance)
(outcomes 1 2 3 4 5)
(probs array #58011882)
(preds d3 x3)

(succs r4)
(dim5))
(r4 (kind det)
(vals array #5801187E)
(preds x4)
(succs v))
(v (kind det)
(type sum)
(preds 1O rl r2 r3 r4)))

Figure 5.1b. Data frame of the influence diagram for an additive MDP.

x(0)

x(1) x(2)
d(0) d(1) d(@)
r(0) r(1) 1(2)
+
v
(a) Introduction of subvalue nodes.
102

x(3)

r4)




x(0) x(1) x(2) x(3)

d(0) d(1) d2) d(3)
©) 1) 2) 3) @ "
o i
(b) Expectation of r(4) with respect to x(4).

x(0) x(1) x(2) x(3)
d(0) d(1) d2) d@3)
r(0) (1) r2) r(3) r(4)
+ +
V )e— v(3)

(c) Introduction of subvalue ncde v(3).
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d(0) d(1) d2) d(3)

r(0) r(1) 1(2) v(3)

< +

(d) Subvalue nodes r(3) and r(4) summed.

x(0) x(1) x(2) x{3)

d(0) d(1) d2)

r(0) r(1) r(2) v(3)

< +

(e) Maximization of v(3) over d(3).

Figure 5.2. First few steps of the solution process for the additive MDP.

If one was solving this MDP in the probability calculus with dynamic

alsn'a >

programming, one would rewrite the original value function
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V =r(0) + r(1) + 1(2) + r(3) + 1(4)

-
»

PN

as

¢ v(4) = 1(4)
i v(i) = 1) + v(i+1) fori=0to3
E V = v(0).

' These v(i)'s correspond precisely to the v(i) subvalue nodes introduced by the
N algorithm. An example is Fig. 5.2c. in which v(3) was introduced to represent the sum
of 1(3) and r(4). This means that the algorithm is setting up the recursive equations of

dynamic programming as it is executing without assistance from the user.

Risk Sensitive Markov Decision Process

For the same problem assume the decision maker is risk averse with exponential utility

function
u(V) =-exp(-y* V)

In the current problem, we have value function

V =1(0) + r(1) + 1(2) + 1(3) + 1(4)

and so using the above utility function the value function of the problem becomes
u(V) = -exp[-y* [r(0) + r(1) + r(2) + r(3) + r(4)]]

We have

L
RN
"
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¢
g
)
-
bI.'
L.
b e
=
b
L

w(V) = -{exp(-y * [r(0) + r(1) + 1(2) + r(3) + r(H)]]}
= -{expl[(-V) O] ~ [ e (D] +[C7) e 1)) + [V r + [-7)  r(D]]}
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Because eX+Y = eX » eY this can be rewritten as

u(V) = -{expl(-Y) * 1(0)] * exp[(-) * r(1)] * exp[(-y) * r(2)]
* exp[(-Y) * r(3)] * exp[(-V) * r(4)]}

EEESA- . "o % ey W TEEEM . . ¢

We can thus minimize instead of maximize

.U/

: = {cxp[(-y) . f(O)] hd CXp[(-'Y) *r(l)] - exp[(-y) . r(2)] ':.
| * exp{(-y) * 1(3)] * exp[(-Y) * r(4)]} - : R

-
l Therefore the original problem can be formulated as an influence diagram as in Fig. !{13‘

5.3. Note that the subvalue nodes now contain the negative of the utilities of the

rewards for each stage rather than the rewards themselves.

) x(0) x(1) x(2) x(3) x(4)
I d(0) d(1) d(2) d(3)
l r(0) r(1) r(2) r(3) r(4)
X
: v
) Figure 5.3. Influence diagram for a risk sensitive MDP with exponential
utility function.
'; The ordering of node removals performed by the algorithm to solve this influence
diagram is exactly the same as for the additive case. There are only two differences in
the solution procedure. First. the operation of removing r(i) and v(i+1) into v(i) at each
'
1
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l i
J oty
- stage now corresponds to multiplying r(i) and v(i+1) instead of adding them. Second, :;’7:'_'.:
- removing d(i) into v(i) now corresponds to minimization of v(i) over d(i) instead of o
_I. maximization. E—
. N
g Thus risk sensitive, finite horizon MDPs can be formulated and solved as influence :;S‘;:'-
i diagrams in a straightforward fashion. N
: £

Markov Decision Process with Random Rewards

i For a third example, consider an MDP with random rewards. Also, assume the user
did not represent the value node as a sum node though the value function is the sum of )
the random stage rewards. The influence diagram for this MDP is in Fig. 5.4 which \
i‘ also shows the data subframe of the value node. i
: x(0) x(1) x(2) x(3) x(4) g
) 4(0) a(1) 4 d3) E ;
) (0) (1) () r3) (4) '-:j'i';'
. Y S
3 . ,
- (... (V (kind det) .
2 (type value) .
2 (function (+ r(0) r(1) r(2) r(3) r(4))) }»,'jf:f:
- (preds r(0) r(1) r(2) r(3) r(4))) . . .) .-'\—.:_:_,
'[ Figure 5.4. An MDP with random rewards including the data subframe for "
- the value node. T
; i
" a
. "
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(... (V (kind det)

(type sum)
(preds g1 g2 g3 g4 g5))
(g1 (kind det)
(type subvalue)
(function r(0))
(preds r(0)))
(g2 (kind det)
(type subvalue)
(function r(1))
(preds r(1)))
(g3 (kind det)
(type subvalue)
(function r(2))
(preds r(2)))
(g4 (kind det)
(type subvalue)
(function r(3))
(preds r(3)))
(g5 (kind det)
(type subvalue)
(function r(4))
(preds r(4))) . . .)

(a) Afier subvalue structure generation.
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(b) Expectation of g5 with respect to r(4).
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(c) Expectation of g4 with respect 10 r(3).
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x(1) x(2) x(3)

d(1) d(2) d(3)

r(1) (2)

g2 g3 04 g5

< +

(d) Expectation of g5 with respect to x(4).

x(0) x(1) x(2) x(3)

da(0) d(1) d(2) d(3)

g1 g2 a3 g6

< +

(e) Subvalue nodes g4 and g5 are summed into g6.
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x(0) x(1) x(2) x(3)
d(0) d(1) d(2)
r(0) r(1) r(2)
z gt g2 o3 g6
3 ?
v
=
E::j (f) Maximization of g6 over d(3).
‘ Figure 5.5. First few steps of the solution procedure for the MDP with
5 random rewards.

The first several steps of the solution process for this MDP are shown in Fig. 5.5a
through Fig. 5.5f. The data subframes for the nodes representing the value function
are shown in Fig. 5.5a. Note that the preprocessor of the algorithm, subvalue structure
generation, parses the value function to build the subvalue tree for the problem. ‘

There are two important points to be made from this example. First, the algorithm
can easily handle the fact that the rewards are random. This ability of the subvalue
node influence diagram and the associated algorithm to easily solve decision processes

with structures that vary from the standard forms is one of its most important strengths.

Second, the model input by the user was a straightforward single value node influence

-
e
s,

diagram. The user did not have to know anything about subvalue nodes, dynamic

&
S,
' -
-
‘e
I
"
b )
<
T

B Lg
o

111

D T T I . ST s e LA - N L . . - - - DY .
LI SRR . - . R R e B - T Lo o . . L
- - - Tt s et .t~ L - - - - ~ . . . - - . S N e - - - P « " UL g S T e Y e < . - - - " - - N .

P TR T A ATt T U P R R T S I T
VALK SR P AL AL AL RPN POV TPT Y P8 S AP A P P N A AT VIR W WA AL G I, S St S IR S G

.
[CAPEE Y Py




I programming or MDPs. The only requirement on the input model was that the value
function be in a form that could be parsed. With this limited input from the user the
algorithm added the appropriate subvalue nodes and solved the decision problem by a

- set of operations corresponding to dynamic programming.

5.2 MARKOV DECISION PROCESS WITH TIME LAG

A common deviation to the standard Markov decision process (MDP) formulation is the

case in which the next state x(k+1) depends not only on the current state and decision,

x(k) and d(k), but also on x(k-1), d(k-1) and so forth. This concept is referred to as

: time lag. The influence diagram in Fig. 5.6 illustrates an MDP with time lag with each

:. state variable x(k+1) depending on x(k), d(k), x(k-1) and d(k-1). This problem could
be dealt with using standard dynamic programming techniques by defining an
augmented state variable. For the case in Fig. 5.6 the augmented state variable would
be the vector y(k) = [x(k), x(k-1), d(k-1)]. The decision process with this new state

3 variable would be similar to the standard MDP in Fig. 5.1a, except the value node

would be a product node. Solving this influence diagram is equivalent to solving the

ot et st

problem by dynamic programming. It is clear that using state augmentation means

forcing the problem into the standard MDP format.
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x(0) x(1) x(2) x(3) x(4)

d(0) d(1) di2) d(3)

r(0) r(1) r(2) r(3) r(4)

<< %

Figure 5.6. Markov decision process with time lag.

On the other hand the problem can be solved directly as originally formulated by
applying the techniques in this thesis. The first several steps of the solution procedure
are shown in Fig. 5.7a-g. Reformulating the problem to one with an augmented state
variable is unnecessary. This is advantageous in that it saves the user the work of

reformulation and the original structure of the problem is maintained.
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x(0) x(1) x(2) x(3) x(4)

d(0) d(1) d(2) d(3)

r(0) r(1) r2) r(3) r(4)

<< X

(a) Automatic introduction of subvalue nodes.

x(0) x(1) x(2) x(3)

d(0) d(1) d(2) d(3)

r(0) r(1) r(2) r3) r(4)

<< >

(b) Expectation of r(4) with respect to x(4).
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x(0) x(1) x(2) x(3)

d(0) d(1) d(2) d(3)

r(0) r(1) r(2) r(3)

<< X

v(2)

(c) Subvalue node v(2) introduced.

x(0) x(1) x(2) x(3)

d(0) d(1) d(2)

< X

(d) Subvalue nodes r(2), r(3) and r(4) multiplied.
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x(0) x(1) x(2) x(3)

d(0) d(1) d(2)

r(0) r(1)

< X

(e) Maximization of v(2) with respect to d(3).

x(0) x(1) x(2}
d{0) d(1) d(2)
r(0) r(1) v(2)

< >

(f) Expectation of v(2) with respect to x(3).
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SOOI

.
.
-

d(0) d(1) d(2)

r(Q) v(1)

<< X

(g) Introduction of subvalue node v(1) and nodes r(1) and v(2) summed.

Figure 5.7. Solving the influence diagram for the MDP with time lag.

Another important adsantage of solving this problem as an influence diagram is that
doing so sigmificant!y decreases the data storage requirements and computational
complexaty  In the currer s exaraple. let each d(k) have n alternatives and each x(k)
have n outcomes. Then the augmented state variable, y(k) = [x(k), x(k-1), d(k-1}], has
nd outcomes Thus. since stk s condittoned on vik-1) and d(k-1). n - x n3 xn3=n?
probabilitics must be stored tor vikg 1 the problem s formulated as an influence
diagram asin Fig S.60cach vk s conditioned on x(k-1), x(k-2), d(k-1) and d(k-2).
Onlyn<n-nxn=n- n? prohabiliies must be stored. Likewise, to roll back each
stage of the decision process with the augmented state variable requires an operation of
ordern’. The largest operation necessary an order to solve the problem directly as a

subvalue node mtluence diagram s of order nd,

Pp———
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Thus for this problem the subvalue node influence diagram is quite valuable. It
saves the user the work of reformulation. It allows the problem to be solved in a
framework that captures the structure of the original problem. Finally, it reduces the
number of probabilities stored for each state variable by 2 orders of magnitude and
reduces the size of the largest operation in the solution procedure by 2 orders of
magnitude. Remember though, the exact mapping between the influence diagram and
the probability calculus. Because of this exact mapping, these same efficiencies could
theoretically be obtained by solving the problem in the probability calculus. However,
if the problem did not fit into the standard MDP format, computer tools for solving it
would not be readily available. The influence diagram provides an effective basis for
developing computer tools that can routinely solve decision processes that do not fit the
standard MDP format and thus routinely provide the efficiencies discussed above when

possible.

5.3 PARTIALLY OBSERVABLE MARKOV DECISION PROCESS

The influence diagram cannot be used to directly solve any practical partially observable
Markov decision process (POMDP). The reason is that the POMDP formulation does
not satisfy the principle of optimality as discussed in Section 4.2. The influence
diagram, however, can be used to consider the formulation of POMDPs and the
reformulation of the model necessary to apply the state of the art POMDP algorithms.

The intluence diagram for a three stage POMDP is presented in Fig. 5.8.
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Figure 5.8. A partially observable Markov decision process. RN

First, the influence diagram can be used to show the problem of trying to solve the

POMBDP in a straightforward way. The first step in solving for the optimal policy is to E«
maximize r(2) with respect to d(2). However, because r(2) depends on x(2) and x(2) -
is not observed by d(2), x(2) must first be removed by reversing the x(2) to z(2) arc (\
. and then removing x(2) into r(2) by expectation. But this results in r(2) becoming |
"\ dependent on x(1) which is not observed by d(2) either. Thus x(1) must be removed. -
L\ It turns out that before we are able to maximize r(2) over d(2), all the state variables
ﬁ x(k) have to be removed and in the process r(2) becomes a successor ‘o every z(k) and »
d(k) in the problem. This undesirable state of affairs is is directly attributable to the fact -
that the original formulation of the POMDP did not satisfy the principle of optimality. | .::‘
!: At this point in the solution process, the subset rule indicates that all the reward !,«.;
nodes should be summed. that is reduced into the value node. What is left is an ]
influence diagram with no subvilue nodes that can be solved by the solution techniques g
5 .
: o

119

B T T O R S AU SRR PR




L laat I bty A

for single value node influence diagrams. However, the computational resources
required to solve this influence diagram grow exponentially with the number of stages.
It is impractical to solve almost any reasonable POMDP with this technique.

The key to solving the POMDP is to recognize that though the current state is
unobservable to the decision maker when the current decision must be made, the
decision maker does know his probability distribution on the current state. By
reformulating the POMDP with the probability distribution of the current state as the
state variable, an MDP is produced that does satisfy the principle of optimality. This
reformulated problem is still difficult to solve because the outcome space of each of the
state variables is the whole real line rather than finite. However, special algorithms
exist to solve this problem that exploit the special structure of the value function.

Because of this nature of the outcome space this reformulated process cannot be
solved with current influence diagram tools. However, the influence diagram can be
used to illustrate the reformulation of the POMDP to a form suitable for the POMDP
algorithms. To do this, we need the idea of separating a chance node into two nodes,
one representing the probability distribution of the node and one representing the
outcome of the node conditioned on its probability distribution. Also, the theorem for
removing chance nodes must be generalized.

Consider the influence diagram in Fig. 5.9a. We note two things. First, given the
values of a and b we know for sure the probability distribution of x. Second, the
probability distribution for x represents the decision makers total knowledge of random
variable x. Thus, given the probability distribution of x, no other variable in the
diagram provides any useful information on the outcome of x. These arguments are
represented in the influence diagram in Fig. 5.9b. Variable x, the probability
distribution of x, is a deterministic function of a and b. The variable x is a random

variable and is independent of all other variables in the diagram given 7.
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! of a single stage of that process. The POMDP is such a problem. Reformulating it can
be accomplished on an influence diagram of a single stage. However, the idea of

'- representing a decision process by an influence diagram of a single stage is not fully

¢

J developed, so the POMDP reformulation depicted here is performed on all stages of a

b

. three stage process. The idea of removing an arc will be needed. The conditions

. necessary for this to be a valid reduction of the influence diagram are stated without

-
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Figure 5.9. Inserting a variable representing the probability distribution of
a chance node.

A Section 2.3, it is possible to remove the dependency of a subvalue node on a
chance node though the chance node has successors which are not subvalue nodes. In
this case the chance node remains in the diagram after the dependency is removed. One
can think of this operation as removing an arc. This operation is only useful when a

decision process is stationary and so can be fully represented by an influence diagram
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proof in the following theorem. First, a blocking subvalue node, a concept closely

related to a blocking product node, must be defined.

Definition. A blocking subvalue node b with respect to node x and subvalue

node r is a subvalue node with predecessors ry and rp such that rq is on the

directed path from r to b and node x is a functional predecessor of both ry and r3.

Theorem (Arc Removal). If x is a chance node in an influence diagram and
a) x directly precedes some subvalue node r
b) the directed path from r to the value node contains no blocking subvalue
node with respect r and x or with respect to r and any successors to x,
then the dependency of r on x (the arc from x to r) can be removed by expectation

of r with respect to x.

With these two ideas in hand, the reformulation of the POMDP goes as in
Fig. 5.10.

Note that after the reformulation each stage reward r(k) is independent of the
observation z(k) given (k). This is seen in Fig. 5.10i. Because of this conditional
independence, the arc from z(k) to d(k) can be ignored when making the decision d(k).
Therefore, the z(k) to d(k) arcs can be removed. This is the influence diagram
representation of the sufficient statistic argument of MDPs with incomplete state

information.
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(a) Expectation of each r(k) with respect to z(k+1).

' x(0) x(1) x(2)

d(0) d(1) d(2)

r(0) r(1) r(2)

RIS TR
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(b) Expectation of each r(k) with resuect to x(k+1).
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(c) Arc x(0) to z(0) reversed.
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(d) Node n(0) introduced.
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(e) Expectation of r(0) with respect to x(0).
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(g) Arc x(1)to z(1) reversed.
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(i) After the remaining transformations.

Figure 5.10. Reformulation of the POMDP to a form suitable for the
available algorithms. -

N As mentioned before, the space of the state variables of this MDP is the reals and

< .

o the influence diagram cannot be solved with the methods in this thesis. The algorithms o
: that can solve the reformulated POMDP usc special techniques based on the unique E_

21

e

properties of its value function.

- 5.4 INVENTORY PROBLEM WITH FORECASTS AND :-AL:';::
CORRELATED DEMANDS =

A Markov decision process is frequently formulated with the state variable being a

deterministic function of the previous state, previous decision and a random variable -,
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that is associated with each stage. The random variable at each stage is usually

N 1L

-
L}

unobservable and independent of the random variables in other stages. Such an MDP

. formulation is shown as an influence diagram in Fig. 5.11.

x(0) x(1) x(2)
w(0) w(1) w(2)
d(0) d(1) d(2)
r(0) r(1) r(2)
+
v

Figure 5.11. Alternative formulation of the MDP.

Two common complications to this basic formulation are dependence between the
random variables from stage to stage and the availability of forecasts on future values
of this variable. These complications are usually handled by augmenting the state
variable such that the new state variable is a vector.

A good example is an inventory problem. The random variable is the demand for

the inventory product at cach period. The decision maker must decide what quantity to

PRSI §. | | AR NI A
c

,

t: order to satisfy demand in the current period. When the order decision must be made
< the decision maker will know what the demand was in the previous period and a

o forecast of what demand will be in the current period. The quantity in the current

r-

E:- inventory is also known. The key information that the decision maker does not know
e
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. is what the demand will be in the current period. Costs include the purchase cost of
. new items, a holding cost for items remaining in the inventory at the end of the current
. period and the cost of unmet demand. There can be back ordering and so negative
amounts of inventory are allowed.
A three stage version of the inventory problem is modeled by the influence diagram
- in Fig. 5.12. The first several steps of the solution procedure are depicted in Fig.
5.13.
' fo f1 f2 L
do dt d2 : R
i
o0 o1 02 o
‘ _E\"‘t.
0 1 r2 s
& S
= ]
o . N
- Figure 5.12. The three stage inventory problem. gy
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(a) Expectation of r(2) with respect to d(2).

fo f1 f2

do di

o0 ol

r0 ri r2

+
\%

(b) Maximization of r(2) over 0(2).
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fo f1

do di

G:) s1 s2

o0 ol
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r0 r1 re

+
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V. . .

(c) Expectation of r(2) with respect to f(2).

fo f1

do d1

o0 o1

ro ri re

Rl . FULERT
<+

(d) Deterministic node s(2) removed into r(2).
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S0 (s))
o0 o1
' r0 vi
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(e) Subvalue node v(1) introduced and subvalue nodes r(1) and r(2)
summed into v(1).

.. Figure 5.13. Solving the inventory problem.

As mentioned above, this problem could be solved by augmenting the state

. variables and so fitting it into the standard Markov decision process format. The

. augmented state variable would be a vector containing the forecast, demand and stock

< variables. Call this single state variable x(k). The resulting MDP would be represented

:‘; as the influence diagram in Fig. 5.14.
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Figure 5.14. Influence diagram for inventory problem in standard MDP
format.

. Let us compare the data storage requirements and computational complexity of

solving this problem first, by fitting it into the standard MDP format and second, by

L

influence diagrams. For the sake of simplifying the discussion assume that f(k), d(k)

| and s(k) each have n outcomes and o(k) has n alternatives. Thenin the standard MDP
formulation x(k) will have n3 possible states. Since o(k) has n alternatives and x(k) is
conditioned on x(k-1) and d(k-1), we need to store n4 probability distributions for each

x(k). Each distribution will contain nd probabilities since the state has n3 outcomes.

AL T

Thus n’ probabilities must be stored for each x(k). Likewise, each stage reward will

be conditioned on x(k), o(k) and x(k+1). Therefore, n’ values must be stored for each

F stage reward.

..: Solving the resulting MDP corresponds to solving the influence diagram in Fig. L
. 5.14. For each stage, the state must be removed by expectation. Then the decision is "_::f
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removed by maximization. Finally, v(k-1) is introduced and v(k) and r(k-1) are added.
These operations have costs n7,n4 and n7 respectively.

Alternatively the problem could be solved directly as an influence diagram with no

LERIREY COURVEY VI LT St £

reformulation or state augmentation required. In this case the original structure of the

problem is maintained. The problem is solved using the original variables, not vectors

LT ...

of these variables. This is very important in that the conditional independence between

the variables in each stage and between the stages can be exploited to both reduce the

data requirements and the computational resources required for solving the problem.

l. In the present problem, as depicted in Fig. 5.13, to solve for each stage, d(k) is

removed by expectation then o(k) is removed by maximization. Variable f(k) is then

removed by expectation and s(k) is removed deterministically. Finally, v(k) and r(k-1)

are removed by adding them together. The costs of these operations are nd + n3, n4,

n3, n4 and n3 respectively. The largest operation is now of order nS instead of n” as

| for the strict MDP formulation. If there is additional conditional independence in the

‘ problem the influence diagram can easily exploit it. For example, if the demands are
conditionally independent from one stage to the next then the above operations have
respective costs n4 + 02, n3,n2, nt and n3.

There is also a large decrease in data storage requirements. Variable s(k) can be left

as a deterministic variable. Only one probability distribution is required for f(k) of n
elements. For d(k), nZ distributions are required, each with n elements. Therefore

| only n + n3 probabilities are required to be stored for each stage. Each r(k) is a

i function only of d(k), o(k) and s(k) so only n3 reward values must be stored compared
to n’ in the strict MDP formulation. Not only are data storage requirements much less
but they should be easicr to assess in that they are in terms of the variables in the

problem as originally tormulated.
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Again, remember that influence diagrams and operations performed on them are
only a graphical mapping of models and model manipulating operations in the
probability calculus. Thus the exact same efficiencies discussed above can be obtained
by solving the problem within a probability calculus framework. However, as
discussed at the end of Section 5.2, the influence diagram provides a superior basis for

developing computer tools that routinely provide these efficiencies.

5.5 VOYAGER MARS

An interesting application of decision analysis was to the selection of mission
configuration in NASA's Voyager Mars project. This example illustrates several
important points about the relationship between influence diagrams and decision trees
and the their relative merits. Two important aspects of the problem are coalescence and
asymmetry which were discussed in Section 4.1.

In the problem there are a sequence of missions to the planet Mars. The immediate
objective is to gain scientific knowledge about the atmosphere and surface of the
Martian planet. There is a broad range of alternatives for the configuration of each
mission. The configurations range from a simple atmospheric probe to & lander capable
of soft landing on the surface of the planet and then carrying out life detection
experiments. Each mission has a cost that depends both on the configuration of the
present mission as well as on experience with configurations on previous missions.
Each mission provides benefit in several forms. There is a direct scientific contribution
and a benefit to other space programs. There are also the less direct benefits of
enhancing the perception of the U S. public for the space program and improving
world opinion of the U.S.

Three models of this decision problem were developed in the original decision

analysis: a full scale model, a pilot model and a simplified pilot model. ANl were
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originally modeled as decision trees. These trees captured the asymmetry and
coalescence in the problem. In the present research the simplified pilot model has been
modeled as an influence diagram. The influence diagram has been solved using the
techniques and software developed in this thesis as implemented in ExperLisp on the
Macintosh computer. The pilot model has also been formulated as as influence diagram

but not analyzed on the computer. It is, however, used to compare the relative merits

e

for this problem of trees and influence diagrams.
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The influence diagram for the simple pilot model is shown in Fig 5.15. An

[
L)

At
b

interesting aspect of the model is the information structure. For example, the

.

DR
FEANY
.

configuration for the second mission (variable s(1)) must be decided upon before the
outcome of the first mission (variable m(0)) is known. This unique structure is made

explicit in the influence diagram.

m(0) m(1) m(2) m(3)

S(f) g s: ) ¥ s(2) si)
G ()€ () Teo) ()

<+

Figure 5.15. Influence diagram of the Voyager Mars simple pilot model.

Another interesting feature of the problem is the value structure. Note from the

influence diagram in Fig. 5.15 that the value function is the sum of the deterministic
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costs and benefits. This feature was very important in solving the original decision tree

models in that it significantly reduces the size of the trees by coalescence.

To apply coalescence is a significant modeling effort for problems of the
complexity of the Voyager Mars decision analysis problem. On the other hand, the
subvalue node influence diagram and the associated algorithm automatically exploit the
additive nature of the value function. The only work required by the user its to
formulate the problem with all additivity in the value function made explicit. There are
three ways this can be done. First, the additivity can be represented by a full subvalue
node structure as shown in Fig. 5.16a. This places the most burden on the user and
the least on the algorithm. Second, the user could just represent the fact that the value
function is a sum without building a full subvalue node structure as in Fig. 5.15.
Third, the user could formulate the model as a single value node influence diagram not
even representing explicitly the cost and benefit variables. In this case the value
function stored in the value node must be able to be parsed. In the second and third
case the preprocessor of the algorithm builds the full subvalue structure producing the
influence diagram of Fig. 5.16a.

The first several steps of the solution process for solving the influence diagram of

the simple pilot model arc depicted in Fig. 5.16.
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(a) With subvalue nodes introduced.
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(b) Application of the subset rule.
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(d) Application of the subset rule.
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(c) Expectation of v(3) with respect to m(3).
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(h) Expectation of g5 with respect to m(1).

Figure 5.16. Solving the Voyager Mars simple pilot model.

Though the influence diagram is a powerful tool for applying coalescence to

separable value functions, it is very weak in its ability to exploit asymmetry in a
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decision model. To illustrate this we consider solving the full pilot model of the

Voyager Mars decision analysis using both an influence diagram and a tree. The
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influence diagram is an eight stage version of the four stage decision process of Fig. -
Ry
5.15. The tree is in Fig. 4 on page 460 in [M2]. The chart in Fig 5.17 summarizes the :I:_:-
o
results. It is clear that the inability of the influence diagram to model asymmetry gives P
)
the tree a substantial advantage for this problem in computational resources required for ‘- .
solution. e

Asymmetric | Asymmetric Influence Influence Symmetric

tree, tree, no diagram diagram tree, no
coalescence | coalescence with without coalescence
subvalue nodes| subvalue nodes
Order of compu- 2 3 4 11 11

tational complexity 10 10 10 10 10 N

Figure 5.17. Computational complexity using the different modeling 1-_.5,:’.1
techniques. S

The advantage of the influence diagram is that first, it provides a natural and _:I:j:-.
intuitive model. It explicitly shows the interesting dependency and information )

structure of the problem. It provides a model of the problem that both captures the

problem structure that is important for the decision maker and the analyst while at the
same time is an effective framework for solving the model. A second important
advantage of the influence diagram is that it allows for straightforward exploitation of

the separable value function in this problem. The model need not be handcrafted to : f;‘j};_

e e

exploit its separable nature. On the other hand the influence diagram cannot capture nor

AP
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exploit asymmetry. For this problem this means a substantial increase in computational

cost.
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NOTES AND REFERENCES

Section 5.1. The original work on risk sensitive Markov decision processes is by
Howard and Matheson [H5].

Section 5.2. An introduction to Markov decision processes with time lag and other
complications to the standard MDP formulation is presented in the book by Bertsekas
[B3].

Section 5.3. The state of the art algorithm for solving POMDPs is due to Sondik
and Smallwood [S4]. |

Section 5.4. This alternative formulation for the MDP is quite common. A good
reference is [B3)]. This book also covers state augmentation.

Section §5.5. The Voyager Mars application of decision analysis is described in the
paper by Matheson and Roths [M2] and discussed briefly in the paper by Matheson
[M1].
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Conclusions and Further o
Research R
N
E..
b,
6.1 FURTHER RESEARCH <
If a decision process is stationary, then the information contained in ¢ach stage is R
sufficient to represent the entire decision process. This makes it practical to model and
analyze finite horizon decision processes of many stages and infinite horizon decision Ev
processes. Such processes are both common and important . Therefore. it is desirable
to extend influence diagram theory so that stationary decision processes can be \\
.:\-

represented and analyzed with a influence diagram of a single stage of the process.
There are several problems and opportunities to be investigated in this area. An
unambiguous representation of the decision process by a single stage influence diagram
must be developed that is consistent with current influence diagram theory. Also,
algorithms must be developed for solving influence diagrams representing infinite
horizon decision processes. It is not clear what algorithms for solving infinite horizon
decision processs in the probability calculus are applicable to an influence diagram
formulation. The successive approximations algorithm appears to be a hopeful first

attempt. An opportunity offercd by the single stage influence diagram representation of
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a decision process is simplification. The entire decision process can be simplified by
operations on just the single represented stage. An example of this is removing the
x(k+1) to r(k) arcs in the alternative formulation of the Markov decision process
discussed in Section 2.3.

Two current research areas in influence diagram theory are finding the optimal
ordering of node removals in evaluating influence diagrams and allowing the outcome
and alternative spaces of influence diagram variables to be the real numbers when the
joint probability distribution of the influence diagram is multivariate normal. Both of
these areas promise to provide results that could be profitably combined with the results
of this thesis.

As mentioned in Section 1.5, influence diagrams with some restrictions can be
used in the analysis of the structural controllability of a dynamic system. This is a
promising application of influence diagrams because they explicitly represent some of

the critical aspects of a system for this theory.

6.2 CONCLUSIONS

The influence diagram with subvalue nodes is an effective tool for formulating and
analyzing decision problems with separable value functions. It provides a basis for
algorithms that recognize and exploit this separable nature to efficiently solve such
problems. The most important class of problems with separable value functions is
decision processes. In solving decision processes the subvalue node intluence diagram
and its associated algorithm automatically recognize opportunities for applying the
principle of opumality. It uses the principle of optimality if possible in solving the
decision process, thus effectively performing dynamic programming on the problem.
No assistance from the user is required beyond representing the sums and products in

the value function in the proper fashion. The influence diagram condition for the
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principle of optimality can be used to guide the analyst toward a formulation of a

v
)
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« a
A

decision process that satisfies the principle of optimality. This makes an important
difference in the practicality of solving the decision process.

By solving decision processes in the influence diagram framework the conditional

PSS

independence among the variables in the problem can be exploited to significantly
decrease data storage requirements and computational complexity. Finally, the
subvalue node influence diagram provides an insightful framework for considering

some of the critical characteristics of decision processes.

NOTES AND REFERENCES
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Section 6.1. The research on optimal ordering of node removals in evaluating

influence diagrams is the subject of the thesis by Ezawa [E1]. The research on the

normal distribution and influence diagrams is represented by the paper by Shachter and

Kenley [S3]. Structural controllability of dynamic and descriptor variable systems is

the subject of the thesis by Yamada [Y1].
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